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Abstract

Distributed object applications rely heavily on distributed systems and objects. Solutions using
CORBA with its location transparency are inefficient and do not scale for high-throughput networked
applications. Our work addresses these inefficiencies by creating a mechanism enabling applications to
influence the system’s object location policies on an object-by-object basis.We also provide an analytic
comparison of distributed object systems that do and do not support location transparency and caching
policies. The analysis shows that by using tailorable policies it is possible to achieve significantly
increased performance through the reduction of the message traffic so that it is only a fraction of a per-
cent of the message traffic required to implement a standard CORBA policy.
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1 Introduction

Distributed systems and objects have emerged as fundamental programming technologies in the last
The evolution of the two technologies has been relatively independent: distributed hardware and system-lev
ware now provide an environment for supporting industrial-strength applications based on TCP/IP and on exte
such as the client-server and remote procedure call models of communication. Object technology has ca
unmistakable evolution in the way programmers produce software. Modern applications executing on a work
are constructed using hundreds of objects, and each object can demand significant support from the hardwar

With workstations interconnected by contemporary networks with bandwidths of 100 Mbps (and grea
the near future), it is natural for object-oriented applications to attempt to take advantage of the distributed te
ogy.

Research and commercial organizations have expended considerable effort to combine object tech
with distributed systems, resulting in the creation of CORBA [OMG95] [Scot97], DCOM [Chap97], and oth
CORBA is an open specification that uses location transparency and focuses on the combination of hetero
distributed systems and object technology. It defines an architecture in which objects, written in one language
ing on one computer, can invoke methods of objects written in another language running on a different com
Tenenbaum, Chodhry, and Hughes [TCH97] provide one of many examples of the growing acceptance of the C
standard in the internet market.

We have speculated that applications could have considerable influence on remote object access perf
if the applications could supplyhints,regarding the object management policy, to the distributed object system.
system would be expected to use these hints in placing specific objects at a location that maximizes applicat
formance. These hints provide the meta-interface necessary to enable an open implementation of distributed
If objects are read much more often than they are written, then they could be cached at the reading locat
depending on the application semantics for the particular object. If an object is cached, and has many reade
few writers, the application could suggest the type of memory consistency model to be used for the object,
cached object might have each write update synchronized and caches kept consistent using sequential consi
the cached object can use a much weaker form of consistency when the cached copy’s consistency is less im

We have designed theGryphonmechanism to act as an agent between the applications and the distrib
object manager (an ORB). A Gryphon analyzes hints from a set of applications, then selects a particular obje
tion policy reflecting the application and system requirements. Based on the general design of the Gryphon,
able to compare fundamental aspects of the performance of several different approaches for supporting dis
objects for a given set of applications.

This paper briefly describes the Gryphon architecture for a CORBA-like distributed object system w
applications (or users) can tailor the locations policies. Next, the paper provides a performance model of d
Gryphon configurations with a centralized remote object manager and centralized and distributed CORBA con
tions. Depending on the behavior of the applications, the Gryphon approach can considerably improve the
mance of applications using distributed object. The analysis demonstrates the feasibility of the Gryphon ap
which we are currently implementing.

Section 2 describes related distributed object work. Next we discuss how object location and update p
can influence performance in Section 3. Section 4 describes how Gryphon provides support for location and
policies. Section 5 presents the analytic model. Section 6 uses the models to show traffic patterns. In Sectio
describe theVirtual Planning Room(VPR), our Distributed Virtual Environment (DVE) prototype. We then sho
workload characterization in the VPR and provide comparisons between object utilization scenarios. Section
cusses our conclusions.

2 Related Work

Ahamad and Smith [AS94] described a technique for detecting mutual-consistency requirements in
objects. By determining where the object is being used and the shared repositories where the object is being
the object can be cached where it is frequently accessed. This reduces data access latency and the associate
nication overhead. This research used causal consistency, a form of weak consistency, to regulate consistenc
nance of the object copies.

The Configurable OBjects(COBS) project at Georgia Institute of Technology is building a CORBA com
ant system to run on high-performance architectures [SA97]. This project tailors the performance levels of the
at run-time based on the requirements of the application. Tailoring is achieved using attributes to directly contr
tem characteristics including: selecting object implementations; making objects passive, single- or multi-thr
fragmenting and replicating object state; using reliable, unreliable, or multi-cast protocols; and selecting comp
and secure transmission protocols. This project provides the application programmer a way to gain access to t
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performance features of the underlying object management system.
Project SIRAC [BAB+96] incorporates a technique for creating distributed applications for real time inte

tion using multiple workstations. This project uses Olan, a language designed for run time support of distr
application. Brown and Najork [BN96] have created distributed active objects, Oblets written in Obliq. The Obliq
guage facilitates the distribution of objects over the World Wide Web by providing distribution primitives.

There is a large research and product development community working on object management in
Some of these systems have incorporated domain specific update strategies. For example, the RING syste
centralized multi-casting subsystem incorporates knowledge about visual and auditory occlusion to reduce
tency updates for cached objects [Funk95]. The idea is to allow the server to keep track of which objects are
and within hearing distance of an avatar at a client machine, then to only propagate changes to the client if it
these objects. This strategy requires that the server have knowledge of the location and movement of each a

The Black Sun Community Server is a DVE product that runs over the World Wide Web (WWW) [Blac
This product has also developed domain specific assumptions and algorithms to aid in communication reduct
example, to aid in scalability, as the density of users increases the visible range of an object is reduced (henc
ing the number of update messages on the network). The Black Sun Community Server only propagates
updates to the parties that it decides are interested (using the density threshold) three times a second.

The Distributed Interactive Simulation (DIS) varies an object’s update rate based on the avatar’s di
from the object (this concept is based on “level of detail” notion often used in the graphics community) [Holb9

In our research we have merged the specialized object distribution area with specialized application d
by providing mechanisms for the application developer to impart knowledge to the Gryphon system.

3 Application-Specific Object Location and Caching Policies

In Section 7.1 we describe scenarios of how objects usage varies based on the application. There is
trum of ways in which objects are referenced in a DVE. In some cases, an object is initially defined as a part
world, then no part of its state ever changes (e.g., a wall in a room). In other cases an object may have i
changed rapidly due to its behavior (e.g., an avatar in a DVE, or a subject of collaborative work), or because
quent interactions with other objects (e.g., an office form).

Figure 1 represents a set of different location policies that can be used, based on the application ne
reduce performance bottlenecks while referencing objects. Some objects (like objects u and v) are private to a
cation. Other objects (like r and s in the figure) should be kept only in a server with all references to the object
remote references over the network. Cached objects (such as t and the cached copy t’ in the figure) have the
object stored on the server and copies in clients. Finally, objects such as x and y in the figure are placed at a cl
can be referenced from other clients.

Besides influencing the location/caching of an object, it may not be important to the application for a c
object to be especially consistent. For example in the VPR domain one client may be changing an object fre
but the other client machines need only update their cached copy of the object every few seconds or minutes
fore we also model the case where a client containing a cached object is only occasionally updated. Next we d
mechanisms for managing the location and caching of shared objects.

3.1 Object Location

Assume that a system provides a CORBA interface to manage shared objects for an application, i.e.,
objects are referenced using an interface definition language (IDL). CORBA explicitly addresses the possibili
the underlying object manager may be distributed, meaning that in a network environment there may be severa
ent locations at which an object is stored. Since CORBA supportslocation transparency, a client need only use the
IDL to reference the object; the client is not permitted to know where an object is located — it can only referen
object through the IDL, then the underlying ORB will locate and reference the object.
3
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The system’slocation policydefines the ORB’s strategy for placing objects at various locations in the
work. The ORB is free to choose any location for an object, provided that it can still provide object reference. T
remote object references dominate the performance of a distributed object application such as the VPR. If the
tion uses many remote objects, then its performance will be degraded to the point that remote objects are inf

Since CORBA provides (and enforces) location transparency, its location policy is determined by the
implementation or the system administrator. Neither the ORB designer nor the system administrator is likely to
a priori, what the reference pattern will be for any given object which is solely determined by the way applica
use the object. In our experience, there is a diversity in the policies that should be applied to different objects d
ing on how the particular object is used.

The application software can provide the best information regarding the location for objects in a distri
object management system. Therefore we advocate an approach in which the application environment caninfluence
the location policy by suggesting object locations to the object manager on an object-by-object basis. For ex
the objects that make up a user’s avatar should be located at the workstation where that user interacts with the

3.2 Caching and Consistency

In DVE applicationsSection 7.1 there are a large number of objects that never change state througho
lifetime, e.g., walls and floors in a VE. If such objects are repeatedly referenced from each of the clients, e.g., to
mine their VRML representation and room positioning, there will be considerable wasted network traffic and s
request on the corresponding object storage location. In distributed systems, this kind of problem is classica
dled by making copies of the read-only object, then distributing the copies to each client that wishes to read
such objects are cached to the clients.

Caching becomes difficult when any copy of a cached item is updated by one or more of the clients
other cached copies become invalid. Depending on the consistency model used by the system (the default is
tial consistency) a write operation requires that all cached copies be made consistent with one another. In the
applications described by the scenarios, it is clear that some objects should have sequential consistency and o
have some weaker form of consistency; uniformly applying sequential consistency leads to large performance

Figure 1:Object References
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small effective gain, although applying weak consistency may cause costly race conditions to occur on obje
need fine-grained sharing support.

4 The Gryphon System

In the Gryphon system, applications influence object management policy by dynamically providinghints
and other directives regarding the location, caching, and consistency policy on a per object basis. Each objec
meta-interface and data added to handle accessing and maintaining state of the hints. These hints are analy
Gryphon1 (embedded in each object manager) which translates the hints and directives into object manager
decisions for placing and caching each object. If no hints are provided, the object manager uses its default p
The hints are evaluated at run time, allowing objects to be changed as their requirements change. It should b
that these hints affect the object’s distribution and its update rate on a global level and on a host-by-host basis
special distributed data (i.e. environment variables) exist solely for use by the subsystem in order to achieve
and per-user configurations. A user interacting with groupware on a modem will need different strategies than a
user employing a faster 100Mb Ethernet connection.

4.1 Architecture

The general organization of the Gryphon architecture is shown in Figure 2. Each application use
CORBA IDL interface to reference objects, i.e., it is assumed to use an ORB to reference shared objects. T
ORB is extended to include a Gryphon to accommodate policy hints as specified by application. Each object p
hints (and directives and environment variable values) using additional method calls described below. These e
methods are caught by the Gryphon policy module, then analyzed in the context of the state of the system
nature of the collective hints regarding each object.

We presume that the base ORB has its own internal mechanism for implementing object location and
ing, for example in Electra/Ensemble (E/E) [Birm97] [MS97]. The Gryphon uses E/E, invoking the internal loc
and update features via method calls provided by the ORB implementation with the enhanced mechanisms.

The technique we are using to change an objects location generates the same amount of traffic as o
methods. All methods fit into one network data packet since the objects we are using contain a small amount o
mation (position information and a URL to the VRML representation). In our implementation each object,the_object,
resides in only one physical location and the cached copies,cached_copy, can be distributed throughout the distrib
uted system. The Gryphon keeps a set of pointers tothe_objectand all the associatedcached_copy(s). In order to
change the location of an object the Gryphon modifies the label that designates which isthe_object.

Our caching implementation requires the information regarding the set of pointers for an object and the
designating the actual object. Theget_state() andset_state() method calls are used to transfer object state. It should
noted that these two methods do not include the additional Gryphon information embedded in each object. Thi
mation can be distributed independently usingget_hints() and set_hints(). It should be noted that distributing the
entire object state can be rather costly and result in superfluous data distributed in the update. In the VPR sys
problem could be many orders of magnitude, resulting from the large VRML description of an object doe
change. Our implementation of the VPR does not have this problem since the object only contains a referenc
VRML file. A variety of solutions can be found to this problem including distribution of deltas but our system im
mentation does not address this issue.

The cache update policies that result from the hints can all be implemented by the distributed Gryphon
3 update techniques:

the_object push tocached_copy(s) - .This technique is used when the Gryphon (wherethe_object is located)
decides it is necessary to update all or a subset of thecached_copy(s). Theget_state() method is called on the_object
and thenset_state() is called on the set ofcached_copy(s). This results in synchronizing the state of th
cached_copy(s) with that ofthe_object.

cached_copypush to the_object - . The Gryphon with acached_copydecides to updatethe_object. Theget_state()
method is called oncached_copyand thenset_state() on the_object. If the othercached_copy(s) need to be updated
then the Gryphon withthe_object can use the push tocached_copy(s) technique.

1. Gryphon - A fabled animal with the body of a lion and the head and wings of an eagle. It is symbolicall
significant for its domination of both the earth and the sky, and its combination of intelligence and strengt
The gryphon was alleged to watch over gold mines and hidden treasures. They are said to have hordes o
treasure, which they guard endlessly.
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cached_copypull from the_object - . The Gryphon with acached_copydecides it needs to be synchronized wit
the_object. This Gryphon callsget_state() method onthe_object and thenset_state() on itscached_copy.

A fourth technique could be used withthe_objectpull from cached_copy(s). This technique is not used sinc
there is a one-to-many update problem. Without additional information it must be assumed that all method call
ify the object, limiting the available implementation options of our system. The developer can label methods asread-
only increasing the implementation options available to the Gryphon. Additional labelling specifying modific
information could be supplied but is not addressed by our system.

Like the ORB, the Gryphon architecture is distributed. When a method is called that is specifically inte
for the Gryphon, the method is processed by the portion of the Gryphon on the host where the object reside
design eliminates the problems that could arise from having distributed Gryphons making decisions regardin
flicting requests.

4.2 Hints

Next we describe the hints, directives and environment variables used to communicate with the Gry
Along with the descriptions, we have provided the method calls we plan to implement in the Gryphon. A u
object containing all the environment variables exists at each client and is called thegryphon_environmentobject. It is
modified using method calls and is used by the Gryphon to help in making decisions. In the descriptions that f
we will usethe_object as the name of a distributed object in the system and use C++ like syntax.
• Location - Location can be considered to be more of a directive than a hint. It specifies where the object s

reside. The method callthe_object.move(host_name) is used to movethe_object to the specified location and fix
its location until another method is called to change the location. Host_name is a string representing the 
name where the object should reside. The methodthe_object.locate() returns the current location of the object.
Calling the methodthe_object.unfix() causes the object to use the hints we describe in deciding location. Cal
thethe_object.fix() method will cause the object to remain at its current location. This method is used to fix
the_object at the location where the Gryphon has decided it should reside and has the same effect as call
the_object.move(the_object.locate()).

• Users - This hint specifies which clients are using the system and a numeric value representing the usage
tity. This numeric usage value has no absolute meaning but shows relative usage to the other clients. The
phon takes this information and attempts to place the object at the location with the highest utilization, als
taking into account the rest of the hints and environment variables. Calling the methodthe_object.usage() returns
an associative array of clients and their usage. The methodthe_object.usage_clear() removes all the usage infor-
mation from the object. Calling theusage method with a client name returns the current usage value for that 
ent while a call with a client name and a value as parameters sets the usage value. If the object is being 
the usage is set to 0 for a client, the client will not have a cached copy and will need to directly access the

• Relations - Relations hints which objects should and should not be placed near each other. The method
the_object.relations() returns an associative array of object names and their relation value. The sign and m
tude of the value represents the attraction or repulsion factor. Passing an object name as a parameter re
association value while passing an object name and value sets the association.the_object.relations_clear() clears
the current values.

• Cached - This hint is used to specify whether or not the object should be cached. The method calls includ

Figure 2:ORB with the Gryphon

Application

Hints
Directives
Environment

base ORB

Gryphon

Location & Update Features

Calls to ORB with
required features
6



he

lied.
er
nsis-
ng the
ates

nsis-
nt

client
ow
vailable

within

t man-
charac-

ay also
); VPR
oked by

e network
sing the
ut loca-
omoge-
perfect

veloper
The fol-

d to
to each
el, we
c is repre-
the_object.cached() which returns true if the object is cached and false if it is not. Calling the method with t
parameter true or the parameter false turns caching on and off respectively

• Consistency- If the object is being cached then this hint is used to specify the type of consistency to be app
The method callthe_object.consistency() will return the current policy while sending in a policy as a paramet
will set the policy. The policies include: strong consistency, weak consistency, and domain acceptable co
tency. The Gryphon will decide whether to propagate updates on read or write for weak consistency by usi
information it has available. The domain acceptable consistency comes into play along with the Update R
hint.

• Update Rates - This hint only has an affect when the domain acceptable consistency is selected as the co
tency policy. The methodthe_object.update_rates() is used to specify the update rate for an object on a per clie
basis. It has the same syntax as the Users hint withthe_object.update_rates_clear() used to clear the values. If the
value is not set for a client then the Gryphon uses the other hints to decide on an update rate.

• Environment Variables - User resources and hardware resources can be specified to the Gryphon for each
usinggryphon_environment.resource(). By passing in bandwidth and a value the Gryphon can be aware of h
much data can be handled by the client. Other resources that can be specified include computing power, a
disk space, etc. Thegryphon_environment.resource_usage() method allows for querying about remaining
resources. This feature can be used by the developer to throttle the application demands in order to remain
acceptable resource limits.

5 Performance Comparison

The VPR establishes a baseline application domain for various scenario-specific loads for the objec
agement system. In order to analyze the behavior of a Gryphon implementation, models have been derived to
terize traffic patterns for six different object managers.

5.1 A Model of Network Interaction

The model is based on the VPR environment. The Object state changes when the object moves (it m
change due to other behaviors, though we believe that considering only movement is sufficient for this analysis
processes and external processes (such as FLOATERS) move objects in the VPR. State changes are inv
method calls (messages). All messages are considered to be the same size since they are small and fit into on
data packet. In Section 6 these six different object distribution techniques are analyzed for message traffic u
sample scenarios. Since hints are supplied on a per-object basis it is possible to have objects with and witho
tion, caching, and update information coexisting in a single application. For analysis purposes we assumed h
neous configurations of all the objects in each of the six systems and systems four through six assume
information supplied by the application developer. The reference to perfect information presumes that the de
or the application knows where the object needs to be located and uses the location hint to place the object.
lowing parameters are used to model message traffic:

• N = Number of Moving Objects
• M = Number of Object being modified at each process
• U = Update rate for each of the Moving Objects
• L = Number of processes using the object
• V = Number of processes that are VPR processes
• S = Number of static (not moving) objects
• F = Update rate of display frames
• R = Ratio of updates that get propagated to total updates generated

We derive models for:
• TVPR = Amount of network traffic to each VPR processes in messages per second
• Tapp = Amount of network traffic to each non-VPR processes in messages per second
• Ttotal = Total traffic in the network in messages per second

System 1 (Centralized object manager):This object manager is the centralized object manager implemente
provide the VPR prototype with distributed objects. There is a single server that allows objects to be cached
client location. The object manager leaves consistency entirely up to the application community. In the mod
assume that any reference to an object requires consistency, thus the reference is remote. The message traffi
sented by:
7
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TVPR = U(N+M)

Tapp = TVPR
Ttotal = UL(N+M)

System 2 (ORB Central CORBA):This object manager is a centralized ORB. There is a single server that store
objects, so any reference to an object requires a remote reference. In addition, since the ORB has no specia
edge of the application, the remote process must send a request message and receive the response messag
mine the state of an object. Note that the expressions include references due to frame updates (a DVE needs
objects, it would implicitly read each object at the frame update rate). Because the ORB is centralized and bec
the amount of traffic, the server will likely be a bottleneck. The message traffic is represented by:

TVPR = 2(MU+F(N+S))

Tapp = 2MU

Ttotal = 2(NU+FV(N+S))

System 3 (ORB Distributed CORBA):The object manager is a distributed configuration of ORBs. All objects
randomly and equally distributed among the processes. The ORB is not centralized and local objects do not r
message traffic. The problem for measurement is that accesses that would have gone to the central ORB now
process where the object is located. Distribution addresses the implicit bottleneck due to centralized configurat
TVPR the first part of the expression represents read operations by the local client and the second part represe
by external clients to the data stored on the local server.

TVPR = 2MU(((L-1)/L)+((L-1)/L))+2F(N+S)(((L-1)/L)+(V-1)/L))

Tapp = 2MU(((L-1)/L)+((L-1)/L)) + 2F(N+S)((1/L)V)

Ttotal = 2NU((L-1)/L) + 2F(N+S)((L-1)/L)V

System 4 (ORB with Opaque Location):The object manager includes a Gryphon capable of acting on loca
hints. Like System 3, objects are evenly distributed across processes but in this case they are assumed to be lo
the client making the modifications.

TVPR = 2F(N+S)(((L-1)/L)+(V-1)/L))

Tapp = 2F(N+S)((1/L)V)

Ttotal = 2F(N+S)((L-1)/L)V

System 5 (ORB with Opaque Location and Caching):The object manager includes a Gryphon capable of act
on location caching hints. Like Systems 3 and 4, objects are evenly distributed across processes but in this c
are assumed to be located on the client making the modifications. The model reflects the fact that data are p
the clients instead of being pulled via request messages (i.e., we remove the 2X multiplier to reflect the absen
send message).

TVPR = MU(L-1)

Tapp = TVPR
Ttotal = NU(L-1)

System 6 (ORB with Opaque Location, Caching, and Update Policies):The object manager includes a Grypho
capable of acting on all hints. Like Systems 3, 4, and 5, objects are evenly distributed across processes but in
they are assumed to be located on the client making the modifications. In this system caches can be kept ou
for varying lengths of time (as specified by the application). In the other models, R varies on a per object and p
basis, but for System 6, R is fixed for all objects and users.

TVPR = MU(L-1)R

Tapp = TVPR
Ttotal = NU(L-1)R

6 Analyzing the Gryphon Architecture

The models for message traffic can be used with various values with the independent variables repre
different scenarios in a DVE. Before comparing system performance under different scenarios, let us consi
behavior of the different systems under a fixed load somewhat similar to Scenario B (with a varying number o
cesses) represented by:
8
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• N = Number of Moving Objects = 20
• M = Number of Object being modified at each process = N/L
• U = Update rate for each of the Moving Objects = 2 updates/second
• V = Number of processes that are VPR = L/2
• S = Number of static (not moving) objects = 100
• F = Update rate of display frames = 24 frames/second
• R = Ratio of updates that get propagated = 10%

Figure 3 represents message traffic (in log10 messages per second) for cases from 2 to 40 client proce
(i.e., letting L vary). For TVPR and Tappon Systems 1 and 2, all data passes through a central location creating a
tleneck. This bottleneck is equal to the total number of messages in the system which is shown in the equat
Ttotal. Comparing Systems 2 and 3, which overlap in Ttotal, shows the values resulting by removing the bottleneck a
dispersing the message traffic over the various processes. Also from Figure 3, in the plot for TVPR Systems 3 and 4
have the same curve; so Systems 2, 3, and 4 have a much higher message traffic rate than Systems 1, 5, a
Ttotal in Systems 1, 5, and 6 is significantly reduced when compared to Systems 2, 3, and 4. Tapp reflects the same
results except that applications that have no visible component have reduced traffic in System 2, since they ha
objects locally, as a result of even distribution of objects over the available processes, and they do not access t
nal objects. We can conclude from these two figures that using programs with these characteristics will perfor
well on system 1, 5, and 6 even as the number of entities increases. This data shows that the ability to specify
is useful but in this case caching is also required. It is interesting to see that System 1 performs well but it is
expected since it was specifically designed for this type of application.

In Figure 5 we fix L at 20 and vary the number of moving objects, N, between 0 and 100. The figure s
that System 2, 3, and 4 do not perform well. System 2 does perform well in the equation for Tappsince it is not reading
any objects and no objects are stored on the local process. Figure 5 shows that as the number of modifiable
grow it is crucial to have location and caching policies.

Figure 4 shows why it is also important to have update policies and Section 7.1 will clarify this need fu
For this observation, N is fixed at 20, L at 20, and we vary U (the update rate) between 0 and 100. In Figure 4 t
quency of updates to each object increase while reads remain constant which results in excessive update dis
This is the case in System 1 and 5 (which provide a strongly consistent cache). Even though the reads are o
formed at the fixed rate of F, the updates are propagated at the increasing rate represented by U. With the aid o
policies these unnecessary updates can be eliminated.
9



Figure 3: Using the systems in Section 5.1
with N=20:M=N/L:U=2:V=L/2:S=100:

F=24:R=0.1 and the L value is modified.
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Figure 4:Using the systems in Section 5.1 with
N=20:M=1:L=20:V=10:S=100:F=24:R=0.1

and the U value is modified

Figure 5:Using the systems in Section 5.1 with
M=N/L:U=2:L=20:V=10:S=100:F=24:R=0.1

and the N value is modified.
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7 The DVE Prototype

We have constructed an extensible desktop DVE application, called theVirtual Planning Room(VPR), using
C++ and distributed objects [NAB+97] [NBH+97]. The system environment was composed of a set of contemp
commodity workstations (200 MHz Pentium Pro PCs) interconnected with a 10 Mbps LAN. There was a spectr
performance problems: Part of the bottleneck was in the rendering load on the graphics processor; another p
due to the complexity of generating information to be displayed; we address these issues in ongoing work de
elsewhere [HBB+97]. We also suspected object communication to be a major issue and will apply the locati
update policies to the VPR

The basic VPR configuration is a set of clients and servers, where each client machine implements a
face into the DVE (the VPR application) and an interface to the object system (see Figure 6). Domain-specific
sions can be added to the VPR by adding (other clients with) objects that implement the extension; domain ext
also use the object system. Thus the object management service is a global service in which shared object res
can be manipulated using remote method calls by objects in an instance of the VPR or in a domain extension

The desktop DVE must represent visible/perceivable objects to its user. This is done by first defining aworld
as a collection of shared objects representing the entities that are logically significant in that world. For exa
many of our VPR instances have a floor, walls, and miscellaneous other objects in the room. In particular, whe
person enters the VPR (logs into a VPR session), that person’savataris created as a collection of objects, and the co
responding objects are placed in the world.

Each VPR client implements a user interface; it determines which objects are visible to a person (ba
the corresponding avatar’s location and orientation), then invokes methods on the relevant objects to obta
VRML description so they can be rendered at the client’s user interface. If the VPR’s user or a domain ext
manipulates an object, then the appropriate method in the (shared remote) object must be called to update the
state.

Domain extensions define VRML appearances, whenever relevant, and behaviors that represent the
tics of the extension. We have built an unoccupied air vehicle (the FLOATERS “blimp”1) navigation and control
extension. The VPR domain extension is an interface to a blimp traveling in a large enclosed area. The blimp
trolled by VPR occupants who can see each other and a virtual representation of the blimp in the VPR. The col
tive control issues raised by FLOATERS are similar to the issues that arise with multiple researchers ru
simultaneous experiments on a space shuttle mission.

We believe that once DVEs become a cost-effective technology they will enable a diverse set of applic
that share some of the properties of the VPR with the FLOATERS extension. Next we describe some scenar
illustrate how the VPR and other DVEs might be used. The scenarios address varying scales of applications a
ing access patterns that occur on objects. In Section 6 we will use these scenarios to represent the load on th

1. FLOATERS was designed and built by Sam Siewert as a testbed facility for his thesis work on distribute
real-time control [Siew97] [SNH97]. The FLOATERS extension is available because Siewert’s work const
tutes another part of the project.

Figure 6:The VPR Organization
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Scenario A: Virtual Art Museum. The DVE contains a number of works of art available for viewing and discussi
A person enters the virtual museum, and may browse various works without communication. However, it is ex
that the person will wish to find other people who are interested in specific works, then to discuss the work. Th
represents a person’s presence through the presence of an avatar in the environment; when one person sees
of avatars near an interesting piece of work, then that person can join the group, view the work, and begin dis
it. The virtual art museum has a number of static objects with complex VRML specifications. Avatars move
quently, but most other objects do not move at all.

Scenario B: An Art Gallery. An art gallery has the same essential properties as an art museum, with the diffe
being one of scale. The art gallery is a more intimate environment and tends to be encompassed in one room.
Gallery can also be viewed as a museum with domain optimizations in place to reduce the object information d
one room. Our FLOATERS application provides similar load characteristics to the art gallery.

Scenario C: Collaborative Office Work in the VPR.In a small department, people randomly visit different wor
areas in the office. Each worker has a set of supplementary tools that can be invoked on demand, e.g., word pr
or database query interfaces. Each worker generally does not need to be intimately aware of the location o
workers in the office, except when there is collaborative work to be accomplished, e.g., a collaborative design
The worker avatar objects change their state frequently, though other office objects do not tend to change at 

Scenario D: Model-Based Virtual Environment.Elsewhere we have described model-based virtual environme
as collaborative environments containing a model to provide context for the collaboration [Nutt95] [Nutt97]. In
systems, multiple workers interact with one another and with isolated parts of a larger artifact (a shared mo
work, software methodology, etc.). In this scenario, an avatar may interact with many different components at
tively high rate, but these pair wise interactions need not be updated at a high frequency at any workstation oth
the one manipulating the objects.

Scenario E: A Weather Modeling Application.This scenario is not a DVE application but represents object us
in a highly data and computation intensive application. Each object is used as a data cell which can be thoug
one point of data in the large grid of data. In the weather modeling application, the algorithm breaks down da
small regional subsets and intense processing is performed on that data. After a large amount of processin
formed, data at the fringes of the subsets are distributed to a subset of other processes and then computatio
ues.

7.1 Sample Scenarios

Next we compare the performance of the various systems across various scenarios, i.e., we select a s
ues for the independent variables to represent each scenario. The analysis demonstrates the advantages of
Gryphon architecture to allow the object manager to be tuned to meet the needs of a specific application. Si
model is somewhat simplified, the representations of the scenarios are also somewhat simplified. Since our pu
to evaluate the Gryphon architecture prior to prototyping it, we believe that the assumptions and results just
prototyping efforts. Naturally, once the system has been implemented, we will be able to provide more precis
surements of the performance behavior.

Scenario A - A Virtual Art Museum: N = 1,000: M = 1 (only avatars move): U = 2 (averaged moves): L = 1,000
= 1,000: S = 10,000 (includes art and building structure): R = 0.01 (only propagate 1/2 the updates for 20/1,000
patrons since an avatar can only see a small subset).

Scenario B - An Art Gallery: N = 20: M = 1: U = 2: L = 20: V = 20: S = 100: F=24: R = 0.5 (only propagate 1/2 th
updates).

Scenario C - ACollaborative Office Work in the VPR: N = 100: M = 20: U = 5: L = 5: V = 5: S = 1,000: F = 24:
R = 0.017 (only propagate 1/3 of updates and only see 5/100 of the objects).

Scenario D - A Model-Based Virtual Environment:Assume 5 participants each modify 3 objects at a time. Al
assume each object in the environment controls itself, so no application is needed. N = 20: M = 4: U =5: L = 5: V = 5:
S = 10,000: F = 24: R =0.1 (the client only sees some modifications and reduces the propagation frequency).

Scenario E - A Weather Modeling Application:N = 10,000: M = 1,000: U = 1,000: L = 10: V = 0: S = 0: F = 0: R
13
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= 0.0001 (the data only need to be redistributed once every 10 seconds).

Key:
System 1. - DOM System 2. - Central CORBA
System 3. - Distributed CORBA System 4. - CORBA+Location information
System 5. - System 4+Caching System 6. System 5+Update Policies

Table 1 shows TVPR (the amount of network traffic to each VPR processes in messages per second), Tapp(the
amount of network traffic to each non-VPR processes in messages per second), and Ttotal (the total traffic in the net-
work in messages per second) that each scenario would incur using each system. Observe that System 2 (ce
CORBA) and System 3 (distributed CORBA) do not perform well for many cases due to their location transpa
policy. The table illustrates the expected performance for System 4 in Scenario E, where objects are place
application-favored location and unnecessary caching is not used resulting in a large performance gain comp
the cached location transparent approaches. It should be noted that in Scenario E, except for System 6, the sy
not showing the extra messages that occur from the infrequent reads of small portions of the data. For many
tions, caching (Systems 1 and 5) can also result in large performance gains while in some applications, Sce
and E, caching results in unnecessary cache consistency updates. System 6 with update policies show large
in message traffic except in Scenario B, where System 6 shows “only” a reduction by half of the number of me
generated by System 5 without the update policies. This is a actually a good example of why update polic
important since Scenario B can be interpreted as Scenario A with update strategies already applied. The clear
sion is that location, caching, and position policies together always generate the best performance. With inp
the developer and the three application-specific policies one can create a usable system tailored to the sp
application domain.

Table 1 shows huge differences in the message traffic rate; System 6 uses all hints and directives, and

Table 1: Scenario Performance

Models Scenario A Scenario B Scenario C Scenario D Scenario E

TVPR 1 2,002 42 600 120 11,000,000

2 528,004 5,764 53,000 481,000 2,000,000

3 1,054,950 10,952 84,800 769,600 3,600,000

4 1,054,940 10,944 84,480 769,536 0

5 1,998 38 400 80 9,000,000

6 20 19 7 8 900

Tapp 1 2,002 42 600 120 11,000,000

2 4 4 200 40 2,000,000

3 528,008 5,768 53,120 481,024 3,600,000

4 528,000 5,760 52,800 480,960 0

5 1,998 38 400 80 9,000,000

6 20 19 7 8 900

Ttotal 1 2,002,000 840 3000 600 110,000,000

2 528,004,000 115,280 265,000 2,405,000 20,000,000

3 527,476,000 109,516 212,000 1,924,000 18,000,000

4 527,472,000 109,440 211,200 1,923,840 0

5 1,998,000 760 2,000 400 90,000,000

6 19,980 380 34 40 9,000
14
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erally able to provide the highest level of performance. For Ttotal its message rate is only a fraction of a percent of ce
tralized and distributed CORBA systems for all 5 scenarios. We conclude that the Gryphon architecture is
prototyping for more comprehensive evaluation. (For example, the prototype system will allow us to observe th
formance of a real system under real load due to objects with tailorable policies.)

8 Conclusion and Future Work

We implemented and used our VPR with the FLOATERS domain extension. As expected, the VPR w
too slow for many of the applications we wished to support (similar to the scenarios). Our research group is att
the performance of the underlying software in various ways, all based on using application-specific knowle
assist the system in choosing its resource management policies. This paper addresses distributed object e
problems which can be applied to the FLOATERS and other scenarios.

Our experience led us to believe that some of the efficiency problems could be overcome through dev
and application input to the subsystem. We then hypothesized the critical performance factors for distributed
— location, caching, and consistency — resulting in the basic design of the Gryphon.

The goal of this paper is to explore the Gryphon design to determine if tailorable policies would have
nificant influence on the performance of the VPR and its applications. Rather than build the system and testin
have chosen to conduct the analysis described here to get an idea of the performance gains we might expe
Gryphon-based system. Our analytic models are driven by data derived from the kind of scenarios we see driv
VPR. The model indicates that the reduced message traffic improvements of our design can be significant —
reduce the message traffic to a fraction of a percent compared to a standard CORBA implementation (depen
the scenario). The key improvement comes from the application’s ability to tailor the object management p
according to its need and use. We are convinced that this analysis justifies further consideration of the G
model, so now we are prototyping the Gryphon on Electra/Ensemble.
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