
Dynamically Negotiated Resource Management for
Virtual Environment Applications

Gary J. Nutt�, Scott Brandt, Adam Griff, and Sam Siewert
Department of Computer Science, CB 430

University of Colorado
Boulder, CO 80309-0430

Toby Berk
School of Computer Science

Florida International University
Miami, FL 33159

Marty Humphrey
Department of Computer Science and Engineering

University of Colorado at Denver
Denver, CO 80217

Abstract

Collaboration technology calls for new, innovative techniques for supporting informal commu-
nication and coordinated work. Distributed virtual environments provide one avenue for support-
ing this aspect of computer-supported work. We have built a multiperson distributed virtual en-
vironment using low-cost workstations interconnected with relatively high-speed networks. This
domain makes use of interactive and on-demand continuous media in addition to a number of other
tasks that fall on a spectrum between hard real-time and best-effort response. A brute force tech-
nique for implementing applications in this type of domain demands excessive system resources,
even though the actual requirements by different parts of the application vary according to the way
the virtual environment is being used at the moment. A more sophisticated approach is to provide
applications with the ability to dynamically adjust resource requirements according to their current
needs and the availability of system resources. This paper describes three ways we have approached
resource management based on a principle of dynamic negotiation between the application and the
system resource management.

�Authors Nutt, Brandt, and Griff were supported by NSF Grant No. IRI-9307619

1

1 Introduction

There is an emerging class of application programs, stimulated by the rapid evolution of computer

hardware and networks. These applications go beyond the traditional numerical and character data

into various forms of continuous media such as audio and video; they also take advantage of object

technology as a programming paradigm. Distributed virtual environments (DVEs) are an instance of this

new class: a DVE supports a world containing various shared entities; users interact with the entities in

the world using a multimedia workstation. DVEs are data-intensive environments, since shared infor-

mation must be disseminated throughout the network of user machines. Operating systems manage

the resources/facilities used for distributing the data using built-in policies; experience with contem-

porary operation systems shows that they do not provide the type of support need to handle data

movement for applications like a DVE.

This paper describes a study of diverse aspects of systems support for the capture, management,

and delivery of data in DVEs. We have created an instance of a DVE called the virtual planning room

(VPR) to explore the feasibility of current software and hardware technology in supporting collabo-

rative work in a DVE. Early experimentation with the VPR indicated that while it had potential as a

means for providing the necessary functionality for collaboration, its performance was woefully in-

adequate for qualitatively evaluating the approach. It has been observed that the bottlenecks could

be eliminated with a resource allocation policy in which resources were directed at the parts of the

application that needed them at the moment—a resource management policy was needed that was

sensitive to the dynamic needs of the user in the context of the VPR. Therefore, we began to define

and experiment with ways for the system to provide more effective support for the VPR (as originally

reported in the conference paper from which this paper is derived [28]). We found that the resource

management policy for distributed objects is crucial to the overall performance, which led us to de-

velop the Gryphon distributed object system [19]; this work is described in Section 2. Collaboration

environments such as the VPR cause huge amounts of audio and video data to be frequently moved;

Section 3 describes new, flexible support for device-to-device processing involving confidence-based

execution of threads managing the real-time delivery and processing of this data across nodes [35].

Section 4 presents a generalized software architecture in which applications cooperate with resource

managers through the use of execution levels and a dynamic quality of service manager (DQM) to allow

2

applications and resource managers to dynamically negotiate the level of resource usage by the appli-

cation [7, 20]. The approach used in all three cases enables sets of applications to generate or consume

the most appropriate amount of data given the precise dynamics of the situation. This paper presents

our current results in each of these areas, though our work continues. In the remainder of this section

we elaborate on our motivating application (the VPR), highlight the resource management tradeoffs

raised by its use, then introduce a new resource management philosophy that guides our work.

1.1 Motivation

There is a revolution taking place in the way people want to use computers in their work and play.

Since its introduction in 1980, the personal computer has become a highly refined and cost-effective

tool for supporting an individual’s work (especially in providing tools for publishing documents and

decision support). Modern desktop systems provide sophisticated tools for word processing, docu-

ment publishing, spreadsheets, web browsing, and data manipulation.

Despite the emergence of networks in the same timeframe, the technology has not provided the

same kind of revolutionary support for collaborative work as it has for personal work. Web-based tech-

nology has provided a path for the most significant mechanism for supporting collaboration, though

the granularity of the interaction is essentially at the file/document level.1 Though there is clearly ad-

equate technology for many forms of group interaction (e.g., MBone [11], chat rooms, etc.) computers

and networks have not provided the level of utility to users that has been done by other group-oriented

technologies such as the telephone.

Elsewhere we described barriers to the effective use of distributed systems for supporting collab-

orative work [30]. Briefly, the fundamental issues relate to the style in which the system provides its

support: In the situated work style, the computer is expected to be a logical lever for the work performed

by an individual, with the work of partitioning a job into tasks then coordinating the execution of those

tasks left to human ingenuity (e.g., see [9]). The workflow camp also advocates the use of computers

for personal productivity, but believes that the system should also play a hand in coordinating the

execution of the tasks (e.g., see [16, 26, 34, 38]). It is beyond the scope of this paper to address all the

details of the differences between these two camps; suffice it to say that they are essentially at an im-

1Of course applets in an HTML document interact with their server at a much finer grain than a file, though they, too,
have not yet provided the kind of environment that will directly address collaborative work.

3

passé. The essential element that is missing is a technology to support situated work at the same time

it makes workflow more flexible for group work. This technology relates to the ability of group mem-

bers to easily discuss their work in an environment that is superior to face-to-face meetings, telephone

conversations, or even electronic mail exchanges. The basic premise of our work is that with today’s

hardware technology, it is quickly becoming feasible—and cost-effective—to use a network of comput-

ers to support informal communication in the context of shared electronic artifacts. One manifestation

of such an environment is a DVE containing domain-specific tools. Not only can group members conduct

informal discussions in the DVE, the common (virtual) artifact frames the discussion and provides a

set of domain-specific tools manipulating that artifact.

Our VPR [31] is a multiperson DVE supporting free-form communication in a manner similar to

electronic meeting rooms [15, 37] and other virtual environments [1, 5, 12], but is unique in its support

for domain-specific tools. A VPR world is defined by a collection of objects, with visual representations

and behaviors of varying complexity. An object that represents a human participant is called an avatar,

which is a compound object with an eye object, ear object, and hand object. The avatar is a part of the

world that other avatars can see and hear. Activity takes place in the world when objects interact with

one another. Domain-specific tools are added to the VPR by incorporating additional objects having

“complex” behavior. For example, a formal workflow/process modeling system can be embedded in

the VPR to focus on group coordination [29].

The fundamental role of the VPR is to to provide real-time audio and video support across the

network, to render objects on each user’s screen (according to the avatar’s orientation), and to provide

an environment in which to add domain-specific extensions. The VPR is a client-server system where

each person uses a client workstation to implement the human-computer interface. Hence, the client

machine must render each visible artifact from a (VRML) representation in the corresponding object,

and cause behaviors (such as modifications to objects) to be reflected in all other appropriate clients.

For our prototype, we used widely-available system software and interfaces: CORBA for the object

interface, POSIX for the system call interface, and various network interfaces to support streams. This

allowed us to explore the VPR design, implementation, and functionality, using commonly-available

implementations, even though the performance of the prototypes was severely limited by the system

implementation. Despite the number of papers focusing on VE/VR functionality, design, and user

interfaces, (e.g., see [2, 21, 22]) there is surprisingly little on the effect the operating system has on the

4

(D)VE’s performance. Once we had developed the rudimentary VPR, we were able to explore system

software design and organization that might be well-suited to this application domain.

We believe that applications like the VPR will become increasingly popular, since they evolve dis-

tributed computer systems from environments for coarse-grained information sharing into intelligent

communication environments. There are many issues to address in such a computing environment, in-

cluding cognitive models, human factors aspects, etc. Our focus is on (1) the logical effect of providing

an immersive, domain-specific, robust communication environment, and (2) on the system software

technology required that can make this technology feasible and usable for collaborative work. We

focus on the second issue in this paper.

1.2 Tradeoffs

In experimenting with the VPR, we have encountered a number of barriers to providing efficient allo-

cation of the hardware to the VPR and its applications. Each of these barriers defines a set of tradeoffs

that are encountered in order to deliver and manage the audio and video data across nodes and within

a single node.

High-performance Graphic Rendering of Diverse Types of Artifacts A client machine is expected to

render 24 frames/second, independent of the nature of the VRML descriptions and of other load

on the machine. If the processing load is too large, frames will be lost. Ideally, if the VPR knows

frames will be dropped, it could simplify some of the images; i.e., the VPR should be able to

tradeoff the quality of the rendering of some objects to preserve the frame rate, or to decide to

drop the frame rate and preserve a minimum quality of the image for certain objects. The VPR

needs an indication from the operating system of its ability to service the load.

Supporting Continuous Media Audio and video streams flow among VPR objects. While protocols

can make assurances regarding the isochronous network transfer rate, only a few operating sys-

tems attempt to make guarantees regarding the throughput rate through the operating system

itself [10, 17, 18, 24, 25, 27]. We wanted VPR applications to be able to tradeoff loss, jitter, and

latency in each stream with other activity in the VPR.

Distributed Objects Our application software is all object-oriented. The distributed nature of the VPR

requires that most objects be shared among client machines, even though each machine may be

5

rendering the VRML component of the object 24 times per second. Performance requirements

made it impossible to use a distributed object manager with location transparency. An applica-

tion should to be able to tradeoff shared object consistency against network traffic.

VPR Applications While it might be technically possible to statically tune a system to provide opti-

mized support for the appearance and behavior of each object in a particular VPR, when exten-

sions are added, the tradeoffs change according to the requirements of these extensions as well

as the VPR. A better approach is to allow the VPR and its extensions to influence the tradeoffs on

resource allocation that must be made by the operating system.

1.3 Dynamically Negotiated Resource Allocation

The VPR and similar multimedia applications produce transient loads on the system’s resources, fre-

quently resulting in localize overload conditions. At times, one subset of objects needs to dominate

the personal computer’s resources (because they implement the function that the user is attempting

to accomplish), yet only a few seconds later a different set of objects needs the highest priority to the

resources. We desired a resource management facility that took on certain characteristics of embedded

software—the application assumes part of the responsibility for the resource allocation strategy—yet

which fits within the general framework of a multiprogrammed operating system. We recognized that

the brute force approach is for each component of the VPR to acquire (and perhaps even use) the max-

imum amount of resources it will ever need at all times. However, this approach leads to excessive

hardware requirements that can only be met through extreme over-allocation. (It is arguable whether

this approach is even feasible in software environments with many resource-intensive objects.) In-

stead, we pursued a programming environment in which sophisticated applications could dynami-

cally adjust their requirements according to the availability of resources and the activity directed by

the user. For example, if a part of the VPR is dormant, then we do not want to expend much resource

on supporting it; if it is active, we want to direct as much resource to the component as necessary.

We base our approach on a general form of quality of service (QoS) contracts between application

components and the system. A contract can change according to changes in the overall system load—

the QoS is dynamic. When the situation changes, the application repertoire and the system jointly

choose a new QoS contract through negotiation. We desire resource allocation policies based on a dy-

namically negotiated QoS.

6

2 The Gryphon Distributed Object Manager

The VPR, like many distributed applications, relies on distributed objects as a fundamental program-

ming tool. From the outset, it was clear that the VPR components needed to have more control over

object resource policies than is provided by a manager with built-in location transparency. Without this

flexibility, the applications could not make performance tradeoffs based on access demands. This sec-

tion first discusses the requirements of an object manager for the VPR, and then presents the Gryphon

system, which has been designed and implemented to satisfy these requirements.

It is common for distributed shared memory systems to use caching; it is also clear that the dis-

tributed object service could benefit substantially if caching were applied to objects. Once an object

is cached, its coherence becomes the dominant problem. Our resource management philosophy sug-

gests that the application suite is the only software that has the appropriate knowledge for how often

inconsistent objects should be made consistent. It follows that the distributed object manager should

dynamically negotiate both the location and consistency policies with the application suite, consistent

with the dynamic negotiation philosophy explained in Section 1. QoS.

In the VPR, we currently distinguish among four ways objects should be handled: (1) a private-local

object exists in an address space, (2) a shared-local object can be referenced from another address space,

(3) a shared-nonlocal object is a shared-local object in a remote address space, and (4) a global object exists

in a shared address space. A private-local object is any ordinary C++ object in the VPR client applica-

tion software, e.g., a list of objects of interest to the local avatar. A shared-local object is one which other

clients can access with method calls, but which is supported by the local client—a shared-nonlocal ob-

ject is the dual of a shared-local object; avatars are examples of shared-local/nonlocal objects. A global

object is a part of the virtual environment that is not logically part of any client’s responsibilities, e.g.,

a wall in the VPR.

The use of shared objects is constrained by access times—which is, in turn, determined by location

and caching policy. If client X0 is using object Y implemented on a server, then each time the client

does anything that might cause an interaction with Y (e.g., move its own avatar), X0 must check Y .

Further, if X0 changes Y (e.g., Y is to change position or orientation in the VPR due to actions by X0),

then all other Xi must see the effect of the change to Y .

In the VPR, objects should be cached based on the dynamic caching policy specified for the object

7

Surrogate Object

Object

Reference to Remote Object

Store
Object *y

**y

Manager
Object

SurrogateLocal Object Manager

*r
t’

x

u

VPR Client VPR Client

Surrogate
Object

Manager

y

v

t’

**x

*r

*s

*x

Global Object Manager

t

rs

Figure 1: Object Locations

by the application (not by a policy built into the object service). Since some objects (such as a wall

in a VPR) essentially never change in a session, cached copies are a natural solution. However, other

objects might be in a high state of flux due to interaction with several different clients. How frequently

should the object copies be made to be consistent? Again, this knowledge lies in the VPR software,

not in the object server. This argues for a technique by which the application dynamically negotiates

with the operating system to arrive at a consistency update policy for cached objects. In the VPR, the

application writer should also be able to influence the choice of storage location.

Figure 1 illustrates the set of location policies that can be used in the VPR to reduce the requisite

message traffic when objects are referenced. Some objects (like objects u and v) are private to an appli-

cation. Other objects (like r and s in the figure) are kept only in a server with all references to the object

being remote references over the network. Cached objects (such as t and cached copies t
0

) have the

original object stored on the server and copies in clients. Finally, objects such as x and y in the figure

are placed at a client, yet can be referenced from other clients.

In addition to influencing the location and caching policies of an object, the application can weaken

the consistency requirement [36] for cached objects. For example, if an object is being edited by one

avatar on one client, other client machines may only need to update their cached copy of the object

8

Gryphon

Application

Calls to ORB with required features

Location and Update Features

base ORB

Hints, Directives, Environment

Figure 2: ORB with the Gryphon System

every few minutes (they may even use session semantics for this type of object consistency).

The requirements of object management have led to the development of the Gryphon system [19],

in which applications influence object management policy by dynamically providing hints and other

directives regarding the location, caching, and consistency policy on a per object basis These hints

are analyzed by the distributed Gryphon system (embedded in each object manager) which trans-

lates them into object manager policies for placing, caching, and updating each object. If no hints are

provided, the object manager uses its default policies. The hints are evaluated at runtime, allowing

objects to be changed as their requirements change. Thus these hints affect the object’s distribution

and its update rate on a global level and on a host-by-host basis.

Figure 2 describes the general architecture of the Gryphon system. Each application uses the

CORBA IDL interface to reference objects. The base ORB is extended to include a Gryphon system

to process policy hints as specified by the application. An object provides hints and directives (using

additional method calls) which are caught by the Gryphon policy module and analyzed in the context

of the state of the system and the nature of the the collective hints regarding each object. A more com-

plete description of the hint semantics and the Gryphon system are beyond the scope of this paper, but

they can be found in [19].

To analyze the performance of a Gryphon system implementation, models based on the VPR envi-

ronment are used to characterize traffic patterns resulting from different object managers. In the VPR,

object state changes when the object moves (it may also change due to other behaviors, though this

simplification is sufficient for this analysis). Assuming that a single message is used to move an object,

and that all messages are small and fit into one network data packet, Table 1 identifies parameters used

9

to characterize message traffic:

N Number of moving objects
M Number of objects being modified at each process
U Update rate for each of the moving objects
L Number of processes using the object
V Number of VPR processes
S Number of static (not moving) objects
F Update rate of display frames
R Ratio of updates that get propagated

Table 1: Parameters used to Model Network Traffic

These parameters are used to derive equations for three metrics:

TVPR Amount of network traffic to all VPR processes in messages per second

Tapp Amount of network traffic to all non-VPR processes in messages per second

Ttotal Total traffic in the network in messages per second

In the Gryphon system, the metrics are:

TVPR = MU(L� 1)R

Tapp = TVPR

Ttotal = NU(L� 1)R

Next, we compare the Gryphon system performance with three different object managers in terms

of the network traffic:

System 1 (Centralized object manager) This object manager is a centralized object manager imple-

mented to provide the VPR prototype with distributed objects. There is a single server that

allows objects to be cached to each client location. The object manager leaves consistency en-

tirely up to the applications. In the model, we assume that any reference to an object requires

consistency, thus the reference is remote.

TVPR = U(N +M)

Tapp = TVPR

Ttotal = UL(N +M)

10

System 2 (ORB centralized CORBA) This object manager is a centralized ORB. There is a single server

that stores all objects, so any reference to an object requires a remote reference. In addition, since

the ORB has no special knowledge of the application, a send and receive message is required to

determine the state of an object. Because the ORB is centralized and because of the amount of

traffic, the server will likely be a bottleneck.

TVPR = 2(MU + F (N + S))

Tapp = 2MU

Ttotal = 2(NU + FV (N + S))

System 3 (ORB distributed CORBA) The object manager is a distributed configuration of an ORB. All

objects are randomly and equally distributed among the processes. The ORB is not centralized

and local objects do not result in message traffic. The problem for measurement is that accesses

that would have gone to the central ORB now go to the process where the object is located.

Distribution addresses the implicit bottleneck due to centralized configurations. In TVPR the

first part of the expression represents read operations by the local client and the second part

represents reads by external clients to the data stored on the local server. Note that the expression

includes references due to frame updates (a DVE needs to render objects, it would implicitly read

each object at the frame update rate).

TVPR = 2MU(((L � 1)=L) + ((L� 1)=L)) + 2F (N + S)(((L� 1)=L) + (V � 1)=L))

Tapp = 2MU(((L � 1)=L) + ((L� 1)=L)) + 2F (N + S)((1=L)V)

Ttotal = 2NU((L� 1)=L) + 2F (N + S)((L� 1)=L)V

In order to compare the four approaches, we modeled five different scenarios to represent common

object reference patterns:

Scenario A: Virtual Art Museum The DVE contains a number of works of art available for viewing

and discussion. A person enters the virtual museum, and may browse various works without

communication. However, it is expected that the person will wish to find other people who are

interested in specific works, then to discuss the work. The DVE represents a person’s presence

11

through the presence of an avatar in the environment; when one person sees a number of avatars

near an interesting piece of work, then that person can join the group, view the work, and begin

discussing it. The virtual art museum has a number of static objects with complex VRML speci-

fications. Avatars move infrequently, but most other objects do not move at all. The first part of

Table 2 shows the values used for each load parameter to model this scenario.

Scenario B: Collaboratively Flying an Unoccupied Air Vehicle In the RT-PCIP work (see Section 3)

we build an unoccupied air vehicle, FLOATERS, for proof-of-concept testing. We also used con-

sidered techniques for accomplishing collaborative work—in this case, flying FLOATERS—using

the VPR. In this FLOATERS experiment, avatars are in the virtual space together and they can

see each other and other objects in the room.

Scenario C: Collaborative Office Work in the VPR In a small department, people randomly visit dif-

ferent work areas in the office, such as the copier, the file room, the printer, etc. Each worker has

a set of supplementary tools that can be invoked on demand, e.g., word processors or database

query interfaces. Each worker generally does not need to be intimately aware of the location of

other workers in the office, except when there is collaborative work to be accomplished. Worker

avatar objects change their state frequently, though other office objects do not tend to change.

Scenario D: Model-Based Virtual Environment In Section 1 we described model-based virtual envi-

ronments as collaborative environments containing a model to provide context for the collabo-

ration. Multiple workers interact with one another and with isolated parts of a larger artifact (a

shared model of work, software methodology, etc.). In this scenario, an avatar may interact with

many different components at a relatively high rate, but these pairwise interactions need not be

updated at a high frequency at any workstation other than the one manipulating the objects. As-

sume 5 participants each modify 3 objects at a time. Also assume each object in the environment

controls itself, so no application is needed.

Scenario E: A Weather Modeling Application Weather modeling is a highly data and computation

intensive process with the end result being weather information displayed in a VE. Each object

contains data which can be thought of as one point of data in the large grid of data. In weather

modeling, data is broken into small regional subsets and intense processing is performed on that

12

Scenario N M U L V S F R

A: Art Museum 1,000 1 2 1,000 1,000 10,000 24 0.01
B: FLOATERS 20 1 2 20 20 100 24 0.5
C: Office Work 100 20 5 5 5 1,000 24 0.017
D: Model-Based VE 20 4 5 5 5 10,000 24 0.01
E: Weather Modeling 10,000 1,000 1,000 5 0 0 0 0.0001

Characteristics for Scenarios used to Evaluate the Gryphon System

Models Scenario A Scenario B Scenario C Scenario D Scenario E
System 1 2:0 � 103 42 600 120 1:1 � 107

System 2 5:3 � 105 5:8� 103 5:3� 104 4:8� 105 2:0 � 106

System 3 1:1 � 106 1:1� 104 8:5� 104 7:7� 105 3:2 � 106

Gryphon 20 19 7 8 400

TVPR Comparison

System Scenario A Scenario B Scenario C Scenario D Scenario E
System 1 2:0 � 103 42 600 120 1:1 � 107

System 2 4 4 200 40 2:0 � 106

System 3 5:3 � 105 5:8� 103 5:3� 104 4:8� 105 3:2 � 106

Gryphon 20 19 7 8 400

Tapp Comparison

System Scenario A Scenario B Scenario C Scenario D Scenario E
System 1 2:0 � 106 840 3:0� 103 600 5:5 � 107

System 2 5:2 � 108 1:2� 105 2:7� 105 2:4� 106 2:0 � 107

System 3 5:3 � 108 1:1� 105 2:1� 105 1:9� 106 1:6 � 107

Gryphon 2:0 � 104 380 34 40 4:0 � 103

Ttotal Comparison

Table 2: Gryphon System Performance Comparison

data. After a large amount of processing is performed, data at the fringes of the subsets are

distributed to a subset of other processes and then computation continues.

Table 2 summarizes the main result illustrating the viability of using the Gryphon system in each

ORB. The top of Table 2 summarizes the scenarios. System 2 (centralized CORBA) and System 3 (dis-

tributed CORBA) do not perform well for many cases due to their location transparency policy. The

table illustrates the predicted message traffic for the Gryphon system approach in Scenario E, where

13

objects are placed in an application-favored location resulting in a large performance gain compared

to all location transparent approaches. Note that in Scenario E, except for the configuration using the

Gryphon system, the models do not show the extra messages that occur from the infrequent reads

of small portions of the data. For many applications, caching (System 1) can also result in large per-

formance gains while in some applications, Scenario A and E, caching results in unnecessary cache

consistency updates. The Gryphon system shows a significant reduction in message traffic except in

Scenario B, providing a good illustration of why update policies are important since Scenario B can

be interpreted as Scenario A with update strategies already applied. The figure shows significant dif-

ferences in the message traffic rate; The total message traffic, Ttotal, for the Gryphon system is only a

fraction of a percent of centralized and distributed CORBA systems for all 5 scenarios.

3 Real Time Parametrically Controlled In-Kernel Pipes

Continuous media support at the operating system level has focused on ways to provide application

code with access and control of kernel-level data, e.g, see [10, 13, 17]. However, these interfaces do

not allow the application to influence the way resources are allocated to the components to address

application-specific tradeoffs. The second form of dynamic negotiation explicitly addresses the man-

agement of the deadline-sensitive aspects of continuous media movement. The real-time, parametrically-

controlled in-kernel pipe (RT-PCIP) mechanism, used in conjunction with an execution performance agent

(EPA) tool, manages threads that execute modules in a device-to-device pipeline architecture [35].

In this aspect of the work, the goal is to dynamically negotiate the policy for allocating resources

used to move data from one node to another, or within one node, from one device such as a disk to

another device such as the sound card. The RT-PCIP architecture uses existing techniques for creating

modules to be embedded in kernel space as extensions of device drivers (e.g., see [6, 13]). Each device

has an interface module that can be connected to an arbitrary pipe-stage filter; a pipeline is dynamically

configured by inserting filters between a source and sink device interface (see Figure 3). An application

in user-space monitors summary information from the kernel in order to control the movement of

data between the source and sink devices. The purpose of the execution performance agent (EPA) in

Figure 3 is to interact with the user-space application and with the modules in the pipeline. Specifically,

it (1) provides status information to the user-space program, and accepts parameters that control the

14

Application

Execution Performance Agent

Interface
Device Pipe-Stage

Filter
Device

Interface

Source
Device

Sink
Device

Hardware/Software Interface

kernel API

Figure 3: RT-PCIP Architecture

behavior of the filter modules, and (2) ensures that data flows through the pipeline according to real-

time constraints and estimated module execution times.

In a thread-based operating system environment, pipe module execution is controlled by a kernel

thread scheduler—typically a best-effort scheduler. As long as the system does not become overloaded,

the pipe facility will provide satisfactory service. In overload conditions the EPA dynamically com-

putes new priorities for the threads executing the modules, then provides them to the scheduler so

that it can allocate the CPU to threads with imminent deadlines.

Hard real-time system technology has been developed in domains where the operating system

must guarantee that each task admitted to the system can be completed prior to a prespecified dead-

line [33]. Such systems are, of necessity, conservative: Task processing estimates are expressed in terms

of the worst case execution time (WCET), admission is based on the assumption that every task uses

its maximum amount of resources, and the schedule ensures that all admitted tasks execute by their

deadline. Continuous media applications have less stringent deadline requirements: The threads in a

continuous media pipe must usually meet deadlines, but it is acceptable to occasionally miss one. In

the RT-PCIP, when the system is overloaded—the frequency of missed deadlines is too high—the EPA

reduces the loading conditions by reconfiguring the pipeline, e.g., by removing a compression filter

15

(trading off network bandwidth for CPU bandwidth).

The EPA design is driven by experience and practicality: Rather than using WCET for computing

the schedule, we use a range of values with an associated confidence level to specify the execution

time. The additional requirement on the “application” is to provide execution time estimates with a

range and a confidence; this is only a slightly more complex approach than is described in the use of

Rialto [24].

An application that loads pipeline stages must specify the following parameters:

� Service type common to all modules in a single pipeline: guaranteed, reliable, or best-effort

� Computation time: WCET for guaranteed service, expected execution time (with specification of

distribution, such as a normal distribution with mean � and a specified number of samples) for

reliable service, or none for best-effort service

� Input source or device interface designation

� Input and output block sizes

� Desired termination and soft deadlines with confidence for reliable service (Dterm, Dsoft,

confidenceterm, and confidencesoft)

� Minimum, Rmin, and optimal, Ropt, time for output response

� Release period (expected minimum interarrival time for aperiodics) and I/O periods

3.1 EPA-DM Approach to Thread Scheduling

The approach for scheduling RT-PCIP thread execution is based on a branch of hard real-time schedul-

ing theory called Deadline Monotonic (DM) [3]. Deadline Monotonic consists of fixed-priority schedul-

ing in which threads are periodic in nature and are assigned priorities in inverse relation to their dead-

lines. For example, the thread with the smallest deadline is assigned the highest priority. Deadline

Monotonic has been proven to be an optimal scheduling policy for a set of periodic threads in which

the deadline of every thread is less than or equal to the period of the thread.

In addition, the concept of EPA-DM thread scheduling for pipeline stages is based on a definition

of soft and termination deadlines in terms of utility and potential damage to the system controlled by

16

earliest

computation
time distribution

Chigh, Dterm
signal

and abort

Rmin
buffered

best-case execution
hold early
response

time

release start
time

latest
desired

response termination

Clow, Dsoft
signal

response failure:
dropout degradation

desired
optimal
response

desired
response

earliest
possible
response

utility
curve

WCET

Cexpected

Ropt
buffered

desired
response interval

δδ
context
switch

overhead

re
sp

on
se

 u
til

ity
re

sp
on

se
 d

am
ag

e

Figure 4: Execution Events Showing Utility and Desired Response

the application (see Figure 4 and [8]). Figure 4 shows response time utility and damage in relation to

soft and termination deadlines as well as early responses. The EPA signals the controlling application

when either deadline is missed, and specifically will abort any thread not completed by its termination

deadline. Likewise, the EPA will buffer early responses for later release at Ropt, or at Rmin worst

case. Signaled controlling applications can handle deadline misses according to specific performance

goals, using the EPA interface for renegotiation of service. For applications where missed termination

deadline damage is catastrophic (i.e. the termination deadline is a “hard deadline”), the pipeline must

be configured for guaranteed service rather than reliable service.

The Deadline Monotonic theories do not apply directly to this in-kernel pipeline mechanism, be-

cause Deadline Monotonic is appropriate only for hard real-time systems (implying that the worst-case

execution time is known). The EPA-DM schedulability test eases restriction on the DM admission re-

quirements to allow threads to be admitted with expected execution times (in terms of an execution

confidence interval), rather than requiring deterministic WCET. The expected time determined using

offline estimates of the execution time based on confidence intervals. Knowledge of expected time can

be refined online by the EPA each time a thread is run. By relaxing the WCET admission requirement,

more complex processing can be incorporated, and pessimistic WCET with conservative assumptions

17

(e.g. cache misses and pipeline stalls) need not reduce utility of performance-oriented pipelines which

can tolerate occasional missed deadlines (especially if the probability of a deadline miss can be quan-

tified beforehand).

The evaluation of the EPA-DM schedulability test based on an execution duration described by

confidence intervals results in probabilistic performance predictions on a per-thread basis, in terms of

the expected number of missed soft and termination deadlines. For simplification in the formulas, all

other threads are assumed to contribute the maximum amount of “interference”, which can be loosely

defined as the amount of time spent executing threads other than the one in question. The confidence

in the number of missed soft and termination deadlines is largely a function of the confidence the EPA

user has in the execution time. For example, if a thread has an execution time confidence of 99.9% and

passes the admission test, then it is expected to miss its associated deadline 0.1% of the time or less.

The sufficient (but not necessary) schedulability tests for Deadline Monotonic is used in part to de-

termine schedulability in the EPA-DM scheduling policy shown in Figure 5; here we assume computa-

tion time is expressed as a normal distribution (the normal distribution assumption is not required, but

greatly reduces the number of offline samples needed compared to assuming no distribution). Imax(i)

Eq. 1: (From probability theory for a normal distribution)

Clow or high(i) = Cexpected(i) + Zplow or high
(i)(

�(i)q
Ntrials(i)

)

Eq. 2: (EPA-DM admission test)

8i : 1 � i � n :
Clow or high(i)

Dsoft or term(i)
+

Imax(i)

Dsoft or term(i)
� 1:0?

where

Imax(i) =
i�1X
j=1

dDterm(i)

T (j)
eCterm(j)

Figure 5: Schedulability Formulas for EPA-DM Policy

is the interference time by higher priority threads j = 1 to i� 1 which preempt and execute a number

of times during the period in which thread i runs. The number of times that thread k executes during

a period of thread i is based on the period and execution time of thread k. Clow(i) is the shortest exe-

cution duration of thread i, Chigh(i) is the longest execution duration of thread i, and Tj is the period

18

of thread j. Zplow(i) and Zphigh(i) are the unit normal distribution quantiles for the execution time of

thread i.

An example illustrates the use of the EPA-DM scheduling theory. Assuming that there are two

threads that have a normal distribution of execution times, and that the worst-case execution time,

WCET(i), is known for comparison, the attributes of the threads are shown in Figure 3. If these threads

can be scheduled based on the EPA-DM scheduling admission test, then thread 1 has a probability

of completing execution before Dsoft of at least 99.9% expressed P (Clow < Dsoft) � 0:999. Simi-

larly, probability P (Chigh < Dterm) � 0:9998. Likewise thread 2 has respective deadline confidences

P (Clow < Dsoft) � 0:95 and P (Chigh < Dterm) � 0:9998.

Thread Cexp: � Ntrials Zplow confsoft Zphigh confterm WCET Dsoft Dterm T
1 40 15 32 3.29 99.9% 3.72 99.98% 58 50 60 250
2 230 50 32 1.96 95% 3.72 99.98% 310 400 420 500

Table 3: Parameters for Example Threads

The equations in Figure 5 are used to determine the schedulability of the two threads using execu-

tion time confidence and desired Dsoft and Dterm confidence.

Thread 1

Using eq. 1:

Chigh(1) = 40 + 3:72
15p
32

= 49:86

Clow(1) = 40 + 3:29
15p
32

= 48:72

Because Thread 1 has the shorter deadline of the two threads, it is assigned the highest prior-

ity. Therefore, the interference term, Imax(i), is zero, which simplifies the schedulability test for

Thread 1. In this case, Equation 2, as applied to Thread 1, becomes:

Clow or high(i)

Dsoft or term(i)
� 1:0

The use of Chigh(1) in this formula shows 48:72
50

� 1:0, while the use of Clow(1) in this formula

shows 49:86
50

� 1:0, so this thread is schedulable.

Thread 2

Using eq. 1:

Chigh(2) = 230 + 3:72
50p
32

= 262:88

19

Clow(2) = 230 + 1:96
50p
32

= 247:32

Using eq. 2:
Cloworhigh(2)

Dsoftorterm(2)
+

Imax(2)

Dsoftorterm(2)
� 1:0?

Imax(2) = dDterm(2)

T (1)
eDterm(1) = 2 � 60

The meaning of Imax(2) = 2 � 60 is that Thread 2 can be interrupted twice during its period

by Thread 1, and that in each case Thread 1 might execute until it is terminated by the EPA at

Dterm(2). Evaluating with Chigh yields

247:32

400
+

2 � 60
400

� 1:0

Evaluating with Clow yields
262:88

420
+

2 � 60
420

� 1:0

Because both of these formulas are satisfied, Thread 2 is schedulable.

The example shows how the EPA-DM scheduling approach supports real-time computation in

which it is not necessary to guarantee that every instance of a periodic computation complete execution

by its deadline. In fact, although it is not shown here, the use of WCET in the basic DM formulas result

in the lack of schedulability of Thread 2. WCET is a statistical extreme, and cannot be guaranteed.

In general, the RT-PCIP mechanism, in conjunction with the EPA-DM scheduling approach offers

new, flexible support for device-to-device processing such as needed by the VPR. Threads can be cre-

ated, executed, and monitored in order to deliver predictable, quantifiable performance. Operating

system overhead is kept to a minimum, as the amount of dynamic interaction between application

code and the operating system is low. The RT-PCIP mechanism will be increasingly utilized in the

development of the VPR, as quantifiable real-time movement of data within a node and across nodes

is required.

4 Dynamically Negotiated Scheduling

The design and implementation of the RT-PCIP mechanism has shown to be important for flexible

and predictable control of device-to-device processing. There are more general cases where there is a

need to carefully control the amount of data produced or consumed in applications in the VPR. An

20

application must be able to control the amount and volume of data it produces at any given time,

based on the relative importance of the data to the user, the amount of physical resources available to

the application, and the importance of concurrently-executing applications. Furthermore, applications

must execute according to soft deadlines—applications must produce or consume data in a timely

manner, although occasional missed deadlines can be tolerated.

This section discusses our work in applying dynamic negotiation to CPU scheduling in support of

soft real-time application execution in which a middleware Dynamic QoS Manager (DQM) allocates a

CPU to individual applications according to dynamic application need and corresponding user satis-

faction. Applications are able to trade off individual performance for overall user satisfaction, coop-

erating to maximize user satisfaction by selectively reducing or increasing resource consumption as

available resources and requirements change.

A Quality of Service (QoS) [4] approach can be applied to scheduling to provide operating sys-

tem support for soft real-time application execution. A QoS system allows an application to reserve

a certain amount of resources at initialization time (subject to resource availability), and guarantees

that these resources will be available to the application for the duration of its execution. Applied to

scheduling, this means that a fixed percentage of the CPU can be reserved for the sole use of each appli-

cation. Once the available CPU cycles have been committed, no new applications can begin executing

until other applications have finished, freeing up enough CPU for the new applications requests to be

met.

In a soft real-time environment, the application needs a reasonable assurance (rather than an ab-

solute assurance) that resources will be available on request. In both QoS and hard real-time environ-

ments, the system makes strict guarantees of service, and requires that each application make a strict

statement of its resource needs. As a result, applications in these environment must use worst case

estimates of resource need. In soft real-time systems, the application makes a more optimistic estimate

of its resource needs, expecting that the operating system will generally be able to meet those needs on

demand and will inform the application when it is unable to meet its service assurance.

Several operating systems designers have created designs and interfaces to support some form of

soft real-time operation. These new operating systems interfaces allow a process to either (1) negoti-

ate with the operating system for a specific amount of resources as in RT Mach [25] and Rialto [24];

(2) specify a range of resource allocations as in MMOSS [14]; or (3) specify a measure of application

21

importance that can be used to compute a fair resource allocation as in SMART [27]. These systems all

provide a mechanism that can be used to reduce the resource allotment granted to the running appli-

cations. Even though the system is able to allocate resources more aggressively, the hypothesis is that

soft real-time applications will still perform acceptably. Since their average case resource requirements

may be significantly lower than the worst-case estimates, resources can be allocated so that the benefit

is amortized over the set of executing applications.

In creating resource management mechanisms, operating systems developers have assumed that it

is possible for applications to adjust their behavior according to the availability of resources, but with-

out providing a general model of application development for such an environment. In the extreme,

the applications may be forced to dynamically adapt to a strategy in which the resource allocation is

less than that required for average-case execution. Mercer, et al. suggest that a dynamic resource man-

ager could be created to deal with situation of processor overload [25]. In Rialto, the researchers have

used the mechanism to develop an application repertoire (though there was apparently no attempt to

define a general model for its use).

In the DQM framework applications are constructed to take advantage of such mechanisms with-

out having to participate in a detailed negotiation protocol. The framework is based on the notion

of execution levels; each application program is constructed using a set of strategies for achieving its

goals where the strategies are ordered by their relative resource usage and the relative quality of their

output. The DQM interprets resource usage information from the operating system and execution

level information from the community of applications to balance the system load, overall user satis-

faction, and available resources across the collection of applications. Section 4.3 describes experiments

conducted to evaluate the approach.

4.1 Execution Levels

The execution level is an abstraction used and defined during the design and implementation of an ap-

plication that directly responds to changing resource availability (such as reduced network bandwidth

or reduced CPU availability). In general, execution levels are used to represent varying degrees of

satisfaction using varying amounts of resources. Application execution is characterized by a set of

triples:

fLeveli; Resourcei; Benefitjg

22

where Leveli > Levelj) Resourcei > Resourcej , and where Leveli > Levelj) Benefiti >

Benefitj .

Rendering Lights Polygons Frames per second % of Max
smooth 1 2X 3.19 100.0%
flat 1 2X 3.34 95.5%
wireframe 1 2X 4.45 71.7%
smooth 0 2X 4.76 67.0%
flat 1 2X 5.15 61.9%
smooth 1 1X 5.87 54.3%
flat 1 1X 6.09 52.4%
wireframe 0 2X 7.70 41.4%
smooth 0 1X 7.97 40.0%
flat 0 1X 8.63 37.0%
wireframe 1 1X 8.94 35.7%
wireframe 0 1X 12.74 25.0%

Table 4: Varying Resource Usage in the VPR

Table 4 shows a set of execution levels in an a VPR application. It illustrates how a simple moving

object changes its required processing time over a 4:1 range in 12 execution levels by varying only

3 parameters: rendering mode (wireframe, flat shading or smooth shading), number of specific light

sources (0 or 1), and number of polygons (those marked 2X used twice as many polygons as those

marked 1X). The table shows frames per second generated and time used as a percentage of the highest

level. The OpenGL Performance Characterization Organization [32] has similar benchmark examples

showing applications that exhibit 10 different execution levels with CPU requirements varying by as

much as a factor of 10.

Maximum benefit: 6
Maximum CPU usage: 0.75

Number of execution levels: 6

Level CPU Benefit
1 1.00 1.00
2 0.80 0.90
3 0.65 0.80
4 0.40 0.25
5 0.25 0.10
6 0.00 0.00

Table 5: Triples for an Example Application

23

At run-time, each application specifies its maximum CPU requirements, maximum benefit, and a

set of triples (Level, Resource usage, Benefit) to the DQM. Level 1 represents the highest level and

provides the maximum benefit using the maximum amount of resources, and lower execution levels

are represented with larger numbers. For example, an application might provide information such as

shown in Table 5, which indicates that the maximum amount of CPU that the application will require

is 75% of the CPU, when running at its maximum level, and that at this level it will provide a user-

specified benefit of 6. The table further shows that the application can run with relatively high benefit

(80%) with 65% of its maximum resource allocation, but that if the level of allocation is reduced to 40%,

the quality of the result will be substantially less (25%).

4.2 Dynamic QoS Manager (DQM)

The DQM dynamically determines a specific allocation profile that best suits the needs of the appli-

cations while conforming to the requirements imposed by resource availability, as delivered by the

operating system. At run-time, applications monitor themselves to determine when deadlines have

been missed and notify the DQM in such an event. In response, the DQM informs each application of

the level it should be executing. A modification of execution level causes the application to internally

change the algorithm used to execute. This allows the DQM to leverage the mechanisms provided by

systems such as RT Mach, Rialto, and SMART in order to provide CPU availability to applications.

The DQM dynamically determines a level for the running applications based on the available re-

sources and benefit. Resource availability can be determined in a few different ways. CPU overload

is determined by the incidence of deadline misses in the running applications. CPU underutilization

is determined by CPU idle time. In the current DQM this is done by reading the CPU usage of a low

priority application. In situations of CPU overload (and consequently missed deadlines), levels are

selected that reduce overall CPU usage while maintaining adequate performance over the set of run-

ning applications. Similarly, in situations of CPU underutilization, levels are selected so as to increase

overall CPU usage.

Four resource allocation policies have been examined for use with the DQM:

Distributed. When an application misses a deadline, the application autonomously selects the next

lower level. A variation of this policy allows applications to raise their level when they have

successfully met N consecutive deadlines, where N is application-specific. This policy could be

24

used in conjunction with RT Mach reserves, MMOSS, and SMART.

Fair. This policy has an even and a proportional option: In the event of a deadline miss, the even option

reduces the level of the application that is currently using the most CPU. It assumes that all

applications are equally important and therefore attempts to distribute the CPU resource fairly

among the running applications. In the event of underutilization, this policy raises the level

of the application that is currently using the least CPU time. The proportional option uses the

benefit parameter and raises or lowers the level of the application with the highest or lowest

benefit/CPU ratio. This policy approximates the scheduling used in the SMART system.

Optimal. This policy uses each application’s user-specified benefit (i.e., importance, utility, or priority)

and application-specified maximum CPU usage, as well as the relative CPU usage and benefit in-

formation specified for each level to determine a QoS allocation of CPU resources that maximizes

overall user benefit. This policy performs well for initial QoS allocations, but our experiments

have shown that execution level choice can fluctuate wildly. As a result, a second option was im-

plemented that restricts the change in level to at most 1. This policy is similar to the value-based

approach proposed for the Alpha kernel [23].

Hybrid. This policy uses Optimal to specify the initial QoS allocations, and then uses different algo-

rithms to decide which levels to modify dynamically as resource availability changes. The two

options we have implemented use absolute benefit and benefit density (benefit/incremental CPU

usage) to determine execution level changes.

4.3 DQM Experiments

We used synthetic applications to represent VPR applications to drive the experiments. The synthetic

applications consume CPU cycles and attempt to meet deadlines in accordance with their specified ex-

ecution levels, without performing any useful work. The synthetic applications are generated as ran-

dom programs that meet the desired general criteria—random total QoS requirement, absolute benefit,

number of execution levels, and relative QoS requirements and benefit for each level. The synthetic

applications are periodic in nature, with a constant period of 0.1 second—applications must perform

some work every period. While this does not reflect the complete variability of real applications, it

simplifies the analysis of the resulting data.

25

Application 1
Maximum benefit: 8
Max CPU usage: 0.42
No. of levels: 9

Level CPU Benefit
1 1.00 1.00
2 0.51 0.69
3 0.35 0.40
4 0.27 0.30
5 0.22 0.24
6 0.15 0.16
7 0.10 0.10
8 0.05 0.05
9 0.00 0.00

Application 2
Maximum benefit: 4
Max CPU usage: 0.77
No. of levels: 6

Level CPU Benefit
1 1.00 1.00
2 0.59 0.64
3 0.53 0.55
4 0.45 0.47
5 0.22 0.24
6 0.00 0.00

Application 3
Maximum benefit: 5
Max CPU usage: 0.22
No. of levels: 8

Level CPU Benefit
1 1.00 1.00
2 0.74 0.92
3 0.60 0.39
4 0.55 0.34
5 0.27 0.23
6 0.12 0.11
7 0.05 0.06
8 0.00 0.00

Application 4
Maximum benefit: 2
Max CPU usage: 0.62
No. of levels: 4

Level CPU Benefit
1 1.00 1.00
2 0.35 0.31
3 0.21 0.20
4 0.00 0.00

Table 6: Synthetic Program Characteristics

For a given set of applications, data was generated by running the applications and the DQM

and recording 100 samples of the current level, expected CPU usage, and actual CPU usage for each

application, as well as the total CPU usage, total benefit over all applications, and current system idle

time. The applications ran for a total of 10 seconds (100 periods). Our results indicate that this is

adequate for observing the performance of the policies at steady state.

Additional insight is gained from a separate simulation tool called the Decider; this tool takes the

execution level data for a set of applications and determines all of the level changes that would occur

with a given decision algorithm in a system with no available resources. This tool simulates starting

the applications assuming 100% resource availability, then sequentially adjusting application levels

to lower the overall CPU usage until all applications have stopped running. The Decider is used to

examine the types of decisions that will be made by each decision algorithm in actual situations of

changing resource availability. In particular, this tool gives interesting insight into the stability of each

algorithm, where stability is defined to be the distance in level space from one decision to the next.

Algorithms that result in a smoother Decider output have greater stability. We believe that stability

will prove to be an important measure when in the development of more substantial applications, as it

reflects the changes in application fidelity over time under situations of changing resource availability

that the user will see when running the applications under this model of application execution.

The experiments can be run with 1–9 applications each having between 2 and 9 levels. For sim-

plifying the comparison presented here, a single representative set of synthetic applications was used.

The execution level information for the application set is shown in Table 6. There are 4 applications,

26

0

1

2

3

4

5

6

7

8

9
0 10 20 30 40 50 60 70 80 90 100

E
xe

cu
tio

n
Le

ve
l

Samples (1/10 second interval)

Application 1
Application 2
Application 3
Application 4

(a) Execution Levels

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 C
P

U

Samples (1/10 second interval)

Application 1
Application 2
Application 3
Application 4

Sum

(b) CPU Usage

Figure 6: Performance of Distributed (skip=0)

each having between 4 and 9 levels with associated benefit and CPU usage numbers.

Figure 6(a) shows the execution levels that result for the given application set when running the

DQM with the Distributed policy with a skip value of 0. The skip value indicates the number of missed

deadlines that must occur in succession before the application reduces its execution level. The skip

value of 0 means that the application reacts instantly in lowering its level, regardless of the transient

nature of the overload situation. The execution levels can be seen to change rapidly at the beginning,

because the system is started in a state of CPU overload, i.e. the combined QoS requirement for the

complete set of applications running at the highest level (level 1) is approximately 200% of the CPU.

By the 10th sample, the applications have stabilized at levels that can operate within the available

CPU resources. There is an additional level adjustment of application 3 at the 38th sample due to an

additional missed deadline probably resulting from transient CPU load generated by some non-QoS

application.The lack of changes at the very beginning and the wild fluctuations at the end of each

graph are a result of the start-up and termination of the applications at the beginning and end of each

experiment combined with a slightly longer than 1/10 second sample until after they have finished

executing. Figure 6(b) shows the CPU usage for the applications in the same experiment. The total

requested CPU usage (designated Sum) starts out at approximately twice the available CPU, and then

drops down to 1 as the applications are adjusted to stable levels. Note also the same adjustment at

sample 38, lowering the total CPU usage to approximately 80%.

Figure 7(a) shows the CPU usage for the Distributed policy, with a skip value of 2. Using a larger

27

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 C
P

U

Samples (1/10 second interval)

Application 1
Application 2
Application 3
Application 4

Sum

(a) Distributed (skip=2)

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 C
P

U

Samples (1/10 second interval)

Application 1
Application 2
Application 3
Application 4

Sum

(b) Fair (proportional)

Figure 7: CPU Usage

skip value desensitizes the algorithm to deadline misses such that a level adjustment is only made

for every 3rd deadline miss, rather than for each one. This can result in a longer initial period before

stability is reached, but will result in less overshoot as it gives the applications time to stabilize after

level adjustments. Stability is not reached until about sample 16, and there are two small adjustments

at samples 24 and 49. However, the overall CPU usage stays very close to 100% for the duration of the

experiment with essentially no overshoot as is observed in Figure 6(b).

The results of running the applications with the Fair policy using the even option are not shown.

This centralized policy makes decisions in an attempt to give all applications an equal share of the

CPU. This policy generally produces results nearly identical to the Distributed policy, as it did with

this set of applications. Figure 7(b) shows the results of running the applications with the Fair policy

using the proportional option. This version of the policy attempts to distribute shares of the available

CPU cycles to each application proportional to that application’s benefit. Under the previous policies,

the CPU percentage used by all applications was approximately the same. With this policy, the cpu-

usage/benefit ratio is approximately the same for all applications. In fact, the ratio is as close to equal

as can be reached given the execution levels defined for each applications.

Figure 8 shows the CPU usage for the applications running with the Optimal policy. This policy

reaches steady state operation immediately, as the applications enter the system at a level that uses no

more than the available CPU cycles. This policy optimizes the CPU allocation so as to maximize the

total benefit for the set of applications, producing an overall benefit number of 14.88 as compared with

28

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 C
P

U

Samples (1/10 second interval)

Application 1
Application 2
Application 3
Application 4

Sum

Figure 8: CPU Usage with Optimal

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

F
ra

ct
io

n
of

 C
P

U

Adjustment

Application 1
Application 2
Application 3
Application 4

Sum

(a) Fair (proportional)

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

F
ra

ct
io

n
of

 C
P

U

Adjustment

Application 1
Application 2
Application 3
Application 4

Sum

(b) Optimal

Figure 9: Decider Output

13.02 for the other policies. Note also that because this policy optimizes for benefit and not necessarily

for utilization as in the other policies shown, it can result in a more stable steady state, yielding no

additional deadline misses and requiring no corrections. However, this policy is the least stable given

changing CPU resources, such as those caused by other applications entering or leaving the system.

Figure 9(a) shows the Decider output for the Fair policy using option 2 (proportional). As stated

previously, Decider output with monotonically decreasing levels indicates smooth transitions from

one CPU availability to another. For this policy, the degradation shown is relatively graceful. As CPU

resources change the level of each application changes slowly and evenly. Contrast this with the results

of executing the Decider tool with the Optimal policy, as shown in Figure 9(b). In this case, while the

29

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 C
P

U

Sample (1/10 second interval)

Distributed(skip=2)
Fair(even)

Fair(proportional)
Optimal

(a) Application 2

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
of

 C
P

U

Sample (1/10 second interval)

Distributed(skip=2)
Fair(even)

Fair(proportional)
Optimal

(b) Sum

Figure 10: Performance of Four Policies

sum moves smoothly from 1 to 0, the levels of the individual applications fluctuate significantly as

the available CPU resources decrease. Application 2 gets the worst treatment, starting and stopping 3

times.

Figure 10(a) shows the plots for application 2 with the four different policies. Figure 10(b) shows

the summed CPU usage for the same four policies shown in Figure 10(a). This graph gives an indi-

cation of the time required for all applications to reach steady state, along with the CPU utilization

resulting from the allocations. Figure 10(a), in particular, summarizes the differences between the vari-

ous policies. The Optimal policy selects a feasible value immediately and so the level of the application

is unchanged for the duration of the experiment. The Distributed and Fair (even) policies reach steady

state at the same value, although they take different amounts of time to reach that state, the Distributed

policy taking slightly longer. The Fair (proportional) policy reaches steady state at about the same time

as the Distributed and Fair policies, although its allocation is slightly less in this case.

In general, these experiments show that given a set of level-based applications, it is possible to cre-

ate a DQM that dynamically adjusts application execution levels to maximize user satisfaction within

available resources, even in the absence of any underlying QoS or other soft real-time scheduling mech-

anisms. Four DQM decision policies demonstrate the range possibilities inherent in this model. The

next step in the continued development of this general software architecture is to directly incorpo-

rate these ideas into applications executing in the VPR. The ability to write and execute applications

such that they can internally adjust to changing resource availability is crucial to the development of

30

adaptive multimedia applications.

5 Summary and Conclusion

Next-generation multimedia applications require the timely delivery of complex data across and within

nodes in dynamic computing environments. User requirements can change frequently; writing and

executing applications that deliver and manage the data according to these rapidly-changing require-

ments requires new support from the operating system and development tools.

In this paper, we have presented new support for multimedia computation, focusing on support for

distributed virtual environments. The Gryphon system increases performance for the time-dependent

management and delivery of objects in distributed systems. The RT-PCIP mechanism provides quan-

tifiable device-to-device delivery of data within a single node, with minimized overhead due to the

operating system. The DQM middleware component, in conjunction with the development and de-

ployment of applications that use explicit execution levels, maximizes perceived user benefit from the

execution of a collection of applications under changing resource availability.

The use of these mechanisms will increasingly be important for applications like the VPR, in which

a large amount of data must be handled quickly, and worst case allocation of resources is neither

feasible nor necessary. The tradeoff decisions between resource allocation and/or location and/or

coherence and performance degradation cannot be made centrally, but must involve negotiation with

the applications themselves.

Acknowledgment

Authors Nutt, Brandt, and Griff were supported by NSF Grant No. IRI-9307619. Jim Mankovich

has designed and almost single-handedly built three different versions of the VPR. Several graduate

students, particularly Chris Gantz, have helped us through their participation in group discussions of

virtual environments, human-computer interfaces, real-time, soft real-time, and performance of our

prototype system.

31

References

[1] Denis Amselem. A window on shared virtual environments. Presence: Teleoperators and Virtual

Environments, 4(2):130–145, 1995.

[2] Special Issue of AT&T Technical Journal on Multimedia, September/October 1995. Nikil Jayant,

Technical Reviewing Editor.

[3] Neil C. Audsley, Alan Burns, Mike F. Richardson, and Andy J. Wellings. Hard real-time schedul-

ing: The deadline monotonic approach. In 8th IEEE Workshop on Real-Time Operating Systems and

Software, May 1991.

[4] Cristina Aurrecoechea, Andrew Campbell, and Linda Hauw. A survey of QoS architectures. In

Proceedings of the 4th IFIP International Workshop on Quality of Service, March 1996.

[5] David A. Berkley and J. Robert Ensor. Multimedia research platforms. AT&T Technical Journal,

74(5):34–45, September/October 1995.

[6] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gun Sirer, Marc E. Fiuczynski,

David Becker, Craig Chambers, and Susan Eggers. Extensibility, safety and performance in the

spin operating system. In Proceedings of the Fifteenth ACM Symposium on Operating Systems Princi-

ples, pages 267–284, 1995.

[7] Scott Brandt, Gary Nutt, Toby Berk, and Marty Humphrey. Soft real-time application execution

with dynamic quality of service assurance, November 1997. submitted for publication.

[8] A. Burns. Scheduling hard real-time systems: A review. Software Engineering Journal, May 1991.

[9] Special Issue of Communications of the ACM, September 1995. Lucy Suchman, Guest Editor.

[10] Geoff Coulson, Andrew Campbell, Philippe Robin, Gordon Blair, Michae Papathomas, and David

Hutchinson. The design of a QoS controlled ATM based communication system. IEEE JSAC

Special Issue on ATM Local Area Networks, 1994.

[11] Hans Eriksson. MBONE: The multicast backbone. Communications of the ACM, 37(8):54–60, Au-

gust 1994.

32

[12] Lennart E. Fahlen, Charles Grant Brown, Olov Stahl, and Christer Carlsson. A space based model

for user interaction in shared synthetic environments. In Proceedings of Interchi ’93, pages 43–48,

April 1993.

[13] Kevin Fall and Joseph Pasquale. Exploiting in-kernel data paths to improve i/o throughput and

cpu availability. In Proceedings of the Winter 1993 USENIX Conference, pages 327–333, January 1993.

[14] Changpeng Fan. Evalutions of soft real-time handling methods in a soft real-time framework. In

Proceedings of the 3rd International Conference on Multimedia Modeling, Toulous, France, November

1996.

[15] Jania Gajewska, Jay Kistler, Mark S. Manasse, and David D. Redell. Argo: A system for distributed

collaboration. In Proceedings of the Second ACM International Conference on Multimedia, pages 433–

440, 1994.

[16] Dimitrios Georgakopoulos, Mark Hornick, and Amith Sheth. An overview of workflow man-

agement: From process modeling to workflow automation infrastructure. Distributed and Parallel

Databases, 3(2):117–153, April 1995.

[17] Ramesh Govindan and David P. Anderson. Scheduling and IPC mechanisms for continuous me-

dia. In Proceedings of the Thirteenth ACM Symposium on Operating Systems Principles, pages 68–80,

1991.

[18] Pawan Goyal, Xingan Guo, and Harrick M. Vin. A hierarchical CPU scheduler for multimedia

operating systems. In Proceedings of the Second Symposium on Operating Systems Design and Imple-

mentation (OSDI’96), pages 107–121, 1996.

[19] Adam Jonathan Griff and Gary J. Nutt. Tailorable location policies for distributed object systems,

December 1997. submitted for publication.

[20] Marty Humphrey, Toby Berk, Scott Brandt, and Gary Nutt. Dynamic quality of service resource

management for multimedia applications on general purpose operating systems. In 1997 IEEE

Workshop on Middleware for Distributed Real-Time Systems and Services, December 1997.

[21] Special Issue of IEEE Computer on Virtual Environments, July 1995. David R. Pratt, Michael

Zyda, and Kristen Kelleher.

33

[22] Special Issue of IEEE Computer on Multimedia Systems and Applications, May 1995. Arturo A.

Rodriguez and Lawrence A. Rowe, Guest Editors.

[23] E. Douglas Jensen, C. Douglass Locke, and Hideyuki Toduda. A time-driven scheduling model

for real-time operating systems. In Proceedings of the IEEE Real-Time Systems Symposium, pages

112–122. IEEE, 1985.

[24] Michael B. Jones, Daniela Rosu, and Marcel-Catalin Rosu. Cpu reservations and time constraints:

Efficient, predictable scheduling of independent activities. In Proceedings of the Sixteenth ACM

Symposium on Operating System Principles, October 1997.

[25] Cliff Mercer, Stephan Savage, and Hideyuki Tokuda. Processor capacity reserves: Operating

system support for multimedia applications. In Proceedings of the International Conference on Mul-

timedia Computing and Systems, pages 90–99, May 1994.

[26] C. Mohan. Tutorial: State of the art in workflow management system research and products. a

tutorial at the ACM SIGMOD International Conference on Management of Data, June 1996.

[27] Jason Nieh and Monica S. Lam. The design, implementation and evaluation of SMART: A sched-

uler for multimedia applications. In Proceedings of the Sixteenth ACM Symposium on Operating

Systems Principles, October 1997.

[28] Gary Nutt, Toby Berk, Scott Brandt, Marty Humphrey, and Sam Siewert. Resource management

for a virtual planning room. In Proceedings of the Third International Workshop on Multimedia Infor-

mation Systems, September 1997.

[29] Gary J. Nutt. Model-based virtual environments for collaboration. Technical Report CU-CS-799-

95, Department of Computer Science, University of Colorado, Boulder, December 1995.

[30] Gary J. Nutt. The evolution toward flexible workflow systems. Distributed Systems Engineering,

3:276–294, 1996.

[31] Gary J. Nutt, Joe Antell, Scott Brandt, Chris Gantz, Adam Griff, and Jim Mankovich. Software

support for a virtual planning room. Technical Report CU-CS-800-95, Department of Computer

Science, University of Colorado, Boulder, December 1995.

34

[32] Opengl performance benchmarks. WWW page at http://www.specbench.org/gpc/opc.static,

1997.

[33] Krithi Ramamritham and John A. Stankovic. Scheduling algorithms and operating systems sup-

port for real-time systems. Proceedings of the IEEE, 82(1):55–68, January 1994.

[34] Amit Sheth, editor. NSF Workshop on Workflow and Process Automation in Information Systems: State-

of-the-art and Future Directions. NSF and the University of Georgia, 1996.

[35] Sam Siewert, Gary J. Nutt, and Marty Humphrey. A real-time execution performance agent in-

terface to parametrically controlled in-kernel pipelines. In Proceedings of the Third IEEE Real-Time

Technology and Applications Symposium, pages 172–177, June 1997.

[36] Andrew S. Tanenbaum. Distributed Operating Systems. Prentice-Hall, Inc., 1995.

[37] Harrick M. Vin, Polle T. Zellweger, Daniel C. Swinehart, and P. Venkat Rangan. Multimedia

conferencing in the etherphone environment. IEEE Computer, 24(10):237—268, October 1991.

[38] WFMC Members. A workflow management coalition specification: Glossary and document of

understanding. Technical Report Document Number TC00-0011, Workflow Management Coali-

tion, Brussells, Belgium, August 1994.

35

