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Abstract

Performance bugs have classically been difficult to
identify in high performance programs. The problem
arises because there is a broad spectrum of causes of
performance degradation, and because it may be neces-
sary to apply specialized diagnostics to search the per-
formance space. The prototype tuning environment we
are developing enables one to explore the performance
space of a program using customized performance vi-
sualization techniques. It addresses the breadth prob-
lem by providing tools known to be useful for broad
explorations, tools for inspecting specific performance
bugs, and an ability to extend the observation plat-
form by custom analysis and visualization. This paper
describes the ParaVision tool that enables one to in-
tegrate various PICL-based performance tools into a
single user environment.

1 Introduction

In contemporary high performance computation,
parallel application software is generally recognized as
the limiting factor in applying high performance com-
puters. Tuning is a technique that enables a program
developer to incrementally increase an existing pro-
gram’s performance by repeatedly measuring its be-
havior then modifying the program until the resulting
performance is satisfactory (or until the programmer
decides that the tuning effort is no longer worthwhile).
An environment that supports tuning must be able to
provide metrics for different aspects of the program’s
execution, to perform a broad range of different anal-
yses on the performance data, and to present the data
in a way that makes sense to the programmer. This
paper describes research on the part of the problem
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relating to performance data analysis and presenta-
tion (although any such research clearly depends on
the way performance data are collected and stored).

The hypothesis is that programmers can form
conjectures regarding a program’s performance more
quickly when they are presented with various perfor-
mance visualizations of the data rather than standard-
ized tabular data (e.g., profiling data). A specific
visualization has the property that it tends to con-
dense information into recognizable patterns of shape
or color, eliminating or deemphasizing “unimportant”
detail by emphasizing “important” aspects of the per-
formance data. In other words, a performance visu-
alization makes certain information more easily rec-
ognizable to some people, possibly at the expense of
other information. The choice of what is important
versus unimportant and recognizable versus unrecog-
nizable is reflected in the nature of the performance
visualization. While there may be some aspects of per-
formance that are universally recognizable and impor-
tant, many other aspects are not, but are important
in a specific tuning context for a specific programmer.
This argues for systems that support proven perfor-
mance views as well as for extended, custom views
that can be rapidly and easily constructed for the tun-
ing experiments. This paper illustrates how a tuning
environment can support a broad set of performance
viewing applications whose operation can occur simul-
taneously and in synchronization with extensible visu-
alization facilities.

2 The Analysis and Visualization Sys-
tem

Ideally, a performance analysis and visualization
system should support an arbitrary number of types
of views for reporting performance data; it is unlikely
that any built-in toolkit of viewing mechanisms will
be sufficient for practical use. The performance visu-



alization system must enable its users to create views
based on X-Y plots, meters and gauges, call graphs,
control flow graphs, architectural block diagrams, and
other viewing paradigms unplanned by the tool de-
signer. Not only is it necessary to have alternative
views, they must be logically interconnected to pro-
vide a custom, yet coordinated observation perspective
of the computation.

The first rationale for providing full perspectives
(as contrasted with a view) is that empirical evidence
suggests that the set of coordinated views can provide
more information that the sum of the individual views
[2]. Each view highlights some particular aspect of the
performance data; a set of views enables the program-
mer to correlate various behaviors in a manner far
more sophisticated than algorithmic analysis can be
made to do.

Second, the perspective can include facilities for
correlating cause and effect by having dramatically
different views of the computation, e.g., spikes in an
X-Y graph may be easy to explain if the program-
mer can also see the call graph and/or a window with
source code.

Dynamic observation perspectives imply the exis-
tence of a perspective manager that coordinates the
perspectives with the performance data (cf. Trace-
view’s session manager [3]). The perspective manager
is the program that reads the measurement data, an-
alyzes the data as required for specific views, creates
and destroys views, maintains time consistency among
views, and provides a human-computer interface for
the programmer while he or she uses a particular ob-
servation perspective.

2.1 Implementing Observation Perspec-
tives

Application program performance tools have re-
ceived considerable attention because of their poten-
tial for providing useful assistance to programmers.
Researchers have built several tools, environments,
and systems for analyzing and presenting performance
data to the analyst (application programmer); unfor-
tunately, most such studies are flawed for any of sev-
eral reasons, including (but not limited to) [6]:

• The tools and/or visual reports are not well-
conceived.

• The tools are too complex for the job at hand.

• It is too difficult to learn how to use the tools.

• The tools do not address the specific problem at
hand.
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Figure 1: The ParaVision Tool

• The tools are designed by tool specialists without
adequate knowledge of what application develop-
ers really need.

Many of these problems could be addressed if appli-
cation programmers were given an adequate environ-
ment in which they could easily add familiar tools, or
build their own tools (with or without assistance, for
reuse or one-time use). Our perspective manager is in-
tended to support extensibility that can empower one
to build customized analysis and visualization tools.

The perspective manager, called ParaVision, is or-
ganized as shown in Figure 1. Source programs are
implemented on the PVM platform; this enables us
to use built-in instrumentation that produces a rela-
tively widely-used trace format (PICL [1]). We have
extended the PVM instrumentation by creating a sim-
ple library to produce PICL events by manually in-
serting calls to the instrumentation routines into the
subject source program. At runtime, this results in
the creation of a “Raw PICL trace” file that contains
PVM-related event occurrences and event occurrences
from the manual instrumentation.

ParaVision enables an analyst to select perfor-
mance views as required by running multiple anal-
ysis applications, each of which may support multi-
ple views. Further, whenever two or more views are
present in a perspective, they reflect the same point in
execution time as derived from the trace. ParaVision
accomplishes this by controlling multiple, independent
applications (e.g., MsgView, PVMSR, ParaGraph, etc.
in the figure) each of which is nominally a program
that reacts to events from the trace (and presumably
provides one or more related views); thus an applica-
tion is analogous to a Pablo analysis module [5]. The
perspective manager also reads events from the trace,
then distributes them to applications.



2.2 Trace File Management

PICL trace files traditionally cause difficulty for
analysis routines, primarily due to the nature of the
instrumentation that is used to create events. The first
problem that can occur is that because of clock drift
in distributed memory systems, the instrumentation
may combine events from different machines in an or-
der that is different from that in which they occurred;
specifically, it is possible to encounter receive events
with a timestamp that is earlier than its corresponding
send event. The second problem is related to cases
where “insufficient” state information is recorded with
the event record, e.g., a multicast event may not
specify the names of the recipients; this means that
when an analysis routine encounters a multicast, it
cannot represent the corresponding send operations
with arcs in a display since it does not know the iden-
tity of the head of the arc.

Both of these problems can be handled if the tool
preprocesses the entire trace before it interprets the
events in scaled realtime. ParaVision first loads the
entire PICL trace into its virtual memory (see Figure
1); while this is a limitation on the implementation, we
rationalize this approach by noting that we are simply
taking advantage of the virtual memory mechanism to
map file contents into virtual memory.

Time anomalies are then handled by adjusting
timestamps (implicitly synchronizing the distributed
clocks) after the trace is loaded, but prior to trace pro-
cessing. This typically requires that sends and receives
be matched according to the event parameter settings
(sender and receiver ID), then adjusted; Mankovich
used this technique in Convex’s pvmon3, and we have
reused it in ParaVision.

In general, instrumentation should produce events
that contain enough information to preclude trace
lookahead; then very large traces can be handled (for-
ward and backward) with a simple caching scheme.
Because the instrumentation we use does not always
produce the required information, we currently sim-
ulate idealized instrumentation by applying explicit
transformations on the loaded trace to either add the
desired information to the event or to introduce new
pseudo events that distribute the information at the
appropriate time. We note that other PICL trace tools
often employ the same strategy.

Knowing the computation runtime at the time the
analysis starts is an example of this approach. Once
the trace has been loaded, it is trivial to obtain the
total runtime of the execution (by looking at the times-
tamp on the last event). This information is useful to
applications when they wish to normalize times, scale

axis, etc. ParaVision adds a new event to the trace
(with a zero timestamp) that passes the total runtime
to any application that requests it.

2.3 Application Management

ParaVision can start any application from the ap-
plication set shown in Figure 1, including applications
written explicitly for ParaVision and other generic ap-
plications that read PICL traces. The current version
of ParaVision uses a static configuration file to iden-
tify applications and their required event set; the an-
alyst encodes registration information in the file, then
starts ParaVision. A registration entry includes the
name of a file containing the executable of the appli-
cation, the internet address at which the application
will be loaded, a count of the number of events to be
requested, and a list of symbolic event names (corre-
sponding to names that appear in the PICL trace).

The system reads the configuration file, then starts
each application in a separate process; the applica-
tion establishes a socket connection back to ParaVi-
sion that will be used to distribute events and to syn-
chronize the application with ParaVision’s operation.
ParaVision also builds a data structure to map ap-
plication instances with the events they require (see
below).

In the current implementation, application regis-
tration is done statically by providing a configuration
file to ParaVision. There is no particular barrier to
preventing the configuration from being read dynam-
ically from the ParaVision console, i.e., the configu-
rations could change during execution implying that
applications come and go, and that event distribution
specifications change.

2.4 Distributing Events

After initialization, ParaVision is primarily con-
cerned with managing the analysis time. Analysis
time is started at zero, and is incremented in scaled
realtime (the scaling factor is a user-defined parame-
ter, and may vary during execution). The event trace
is ordered by timestamp; ParaVision extracts events
from the trace, then distributes them to applications
that requested them (during registration) according to
the advancing scaled realtime that it maintains.

ParaVision also can be run backwards, i.e., it can
distribute events in decreasing time order. (It is the
responsibility of each application to handle decreasing
time properly, since the management of such a func-
tion depends on the nature of the application and its
view(s). That is, each application must incorporate its
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Figure 2: PVMSR’s Send-Receive Views

own analysis and display state since ParaVision does
not apply any semantics to events. For example, we
have constructed applications to produce call graphs
and message send-receive displays that can run for-
ward and backward.

Multiple copies of the same application can be run
with different registration parameters, e.g., running
on different machines, or accepting different events.
This allows the analyst to see different views of the
application execution using the same application.

An application can be configured to request that
ParaVision send it all events in the trace (as well as
the name of the trace file in case the application wishes
to make its own copy of the file). This allows one
to run standalone PICL trace applications under the
synchronization control of ParaVision. Synchroniza-
tion is accomplished by placing events on the socket
according to their timestamp at the rate defined by
the scaled realtime of the analysis. Such applications
will not necessarily operate correctly when ParaVision
distributes events in decreasing timestamp order.

2.5 The Human-Computer Interface

ParaVision provides an environment with several
“standard” performance visualization views, tailored
views (achieved by adjusting registration parameters),
customized extended views, and views implemented
by external applications.

The ParaVision console is a simple human-
computer interface to enable the analyst to control
a session; currently, the interface is a dialog box that
reports the current time in the trace; a slider bar to
adjust the realtime rate at which the events will be
distributed to applications; a button to determine the
direction of time movement (and, hence of event re-

trieval from the PICL trace) – forward or backward;
and buttons to run, step, and stop the event process-
ing.

3 Creating Extended Views

ParaVision includes some views that we have con-
structed for our own use (e.g., MessageView and
PVMSR in Figure 11). It also provides an environ-
ment in which one can tailor existing views so that
they provide different variants of the same informa-
tion, in which one can add other applications specif-
ically written for use with ParaVision, and in which
generic PICL-based applications can be added with
little or no modification (e.g., ParaGraph [2]).

3.1 Tailored Views

Tailored views are created by controlling the set of
events distributed to a visualization application. For
example, we have built an application that constructs
a dynamic view in which a node is created whenever
a process is created (see Figure 2(a)); when the pro-
cess sends a message, the view is changed to show an
edge from the sender to a receiver process (the num-
ber represents the count of pending messages, and an
edge color represents the size of the last message sent);
when the message has been received, the count de-
creases, removing the edge if there are no more mes-

1MessageView is an interactive application that creates
a default visualization with one horizontal time line for each
process and vertically-oriented directed edges to indicate mes-
sage passing (see Figure 3, below). PVMSR is another view
of message passing activity in which nodes are drawn to rep-
resent processes and directed edges among the nodes represent
pending messages (see Figure 2(a)).



Figure 3: The MessageView Application

sages pending. This application can be used without
change to simply represent process creation and de-
struction by changing the event registration. In the
original version the application is registered to receive
events for process creation/termination, for message
send/receive initiation, and for message send/receive
completion; in the latter version, only the process cre-
ation/termination events are requested (thus no mes-
sage edges will appear in the view — see Figure 2(b)).

3.2 Building a Custom View

A standard application opens a socket with ParaVi-
sion, then repeatedly requests an event on the socket
until it receives one. Each PICL event is parsed and
analyzed according to the requirements on the perfor-
mance tools. This means that it is easy to construct
applications that accomplish very general event analy-
sis, but it also implies that if event occurrences are re-
lated in any particular way (or if the report produced
by the application otherwise implies state) then the
application must provide facilities to accomplish this.

For example, suppose that the instrumentation
were designed to produce a create event with pa-
rameters identifying the process ID and host name
whenever a process is spawned, and another termi-
nate event with a process ID parameter. Then one
could write a simple application that requested the
two event types, and which simply increased a integer
variable for each create event and decreased the vari-
able for each terminate event. The application state
is the integer variable (ParaVision has no knowledge
of such state). The application could display the vari-
able as a strip chart display of the number of processes
in existence versus time; it could simply maintain the
variable value and respond to interactive queries from
the user or other applications; etc. Provided that state
was accurate, it would be easy to write the application

so that it processed traces in reverse — in this case the
application does the same thing independent of trace
execution direction.

The same trace information could be used to con-
struct a more comprehensive view that illustrates the
processors involved in the computation along with the
number of processes mapped to each processor, details
about each process, etc. The analysis is essentially the
same as described above, but the visualization and
corresponding state are more complex.

The MessageView application provides an alter-
native view of send-receive patterns (see Figure 3).
In this case, the application must be sure that each
send event is matched by a corresponding receive
event according to event parameters identifying the
message. The application state is more complex than
the first case, and reverse operation would require dif-
ferent processing than forward operation.

ParaVision essentially defers reverse execution to
the application. In some cases, executing the analysis
with decreasing timestamps is easy, while in others it
may be very difficult. The PCalls application con-
structs a conventional procedure call graph, an alter-
native columnar representation of process-procedure
state, a procedure call count histogram, and a text
editor window correlated with the selected procedure
from the call graph (see Figure 4). PCalls can execute
in reverse with no real difficulty since its internal state
essentially corresponds to the names of the procedures
on the call stack.

Conventional performance views are ordinarily in-
tended to be read by the user, but do not necessar-
ily support nontrivial interaction with the analysis
program. In the ParaVision environment, it is easy
to construct interactive applications, provided that
the interactions relate only to the functionality im-
plemented in the application itself (i.e., ParaVision’s
API is essentially a one-way interface). Thus an ap-



Figure 4: The PCalls View Set

plication can be built to allow the user to interrogate
its state in any manner that the application writer
chooses. We take advantage of this design in a num-
ber of our performance visualization applications.

For example, the MessageView application of Fig-
ure 3 allows the user to interactively rearrange process
lines, to elide call edges from the view, and to change
time scales. One can also display detailed informa-
tion about message passing in an alternate window,
including send and receive times and message size.

The PCall application provides an even higher de-
gree of human-application interaction; in Figure 4 the
text editor can be started from the call graph view or
the histogram view by selecting the procedure node or
name, respectively.

If the application is interactive, then it can be writ-
ten to accept user input and to adjust the view accord-
ing to the user’s requests. Because of the separation of
the analysis application from the event management,
we have found that it is natural and easy to write
interactive performance analysis applications.

Applications generally provide graphic views of one
kind or another. ParaVision makes no provision for
graphics, although it is possible to construct applica-
tions using any graphics package, including X widgets,
Tcl/Tk, etc. We use McWhirter’s Escalante visual ap-
plication package to construct our more sophisticated
applications [4].

3.3 Integrating Standard PICL Tools

There are many excellent performance analysis and
visualization tools, and several of them are based on
the evolving PICL trace format. ParaVision can in-

corporate such tools into the parallel program tuning
environment with reasonable effort.

Ideally, a PICL trace application operates serially
on events that occur in the execution of the program,
i.e., they do not need to lookahead on the trace file to
finish processing any particular event.

In many cases the application can provide more use-
ful views if it is allowed to lookahead on the trace. For
example, ParaGraph preprocesses the entire trace file
before it animates the behavior represented by the file.
This enables ParaGraph to, for example, construct a
Kiviat graph of process activity with the correct num-
ber of axis (one for each process) even before every
process creation event has been encountered in the
trace. For applications written for ParaVision, new
pseudo events can be placed in the trace as explained
in Section 2, avoiding the need for the application to
indiscriminately browse the trace.

However, other applications may have already en-
coded lookahead solutions into their implementation,
e.g., as we have pointed out above, ParaGraph pre-
processes the trace prior to execution. To adapt Para-
Graph to be used with ParaVision, we have taken the
following steps: we disabled the menu entry to select
a trace file and modified the trace input code to read
the socket from ParaVision. ParaGraph still makes its
own copy of the same trace file used by ParaVision.
Next we changed the event processing loop so that it
accepts a timestamp from ParaVision, then processes
events from the local copy of the trace file that have
not yet been processed but have a timestamp less than
or equal to the timestamp from ParaVision.

This type of modification is usually trivial, and
could be avoided if it the application program did not



need to preprocess the trace (or otherwise access it in
a nonsequential fashion). For ParaGraph, the modi-
fications were performed in a couple of hours and re-
quired the change and addition of about 20 lines of
code. However, the technique does require that the
source code for the application tool be available be-
fore the tool can be integrated into the environment.

The benefit from the modest effort is very high.
ParaGraph represents years of experience in program
analysis and visualization, and we have adapted it to
run in the same syncrhonized environment as ParaVi-
sion applications that we have constructed. We are
now able to use ParaGraph and ParaVision applica-
tions at the same time on the same trace data.

4 Conclusion

This paper focuses on the design of an extensible
performance visualization subenvironment that is still
being refined. Our early experience with the approach
is encouraging in that we have found that it is possi-
ble to harness the work of other tool developers while
developing our own new tools.

We have also found that the tools do, indeed, pro-
vide new insight into the applications. During our sys-
tem development, we used a few different applications
that had already been debugged and tuned. Neverthe-
less the tools illustrated that there were problems with
the applications that had previously gone unnoticed.

For example, a SOR program to solve an N x N
system of linear equations spawned N child processes
to solve for each unknown; on termination, the par-
ent could terminate prior to the termination of the
children, causing an unnoticed wait system call fail-
ure. By analyzing process relationships, this problem
immediately became obvious. We also observed pre-
viously unnoticed problems such as load imbalances,
improper operation at barriers, etc. all providing em-
pirical evidence to support the idea of observation per-
spectives.

Performance visualization depends on the availabil-
ity of a broad set of views. We advocate that a paral-
lel program tuning environment should include facili-
ties to adapt and define diverse views and perspectives
with an underlying perspective manager. This paper
describes how we have designed the ParaVision per-
spective manager to control an environment composed
from a broad spectrum of performance applications,
yet whose operation is synchronized to provide mul-
tiple views of the trace data. In some cases, a PICL
trace analysis program can be run directly as a Par-
aVision application, while in others, it is necessary to

perform minor modifications so that the application
uses the synchronization information distributed by
ParaVision.

ParaVision is early in its development, so there are
many improvements that could be made (as mentioned
in the discussion above). More importantly, we per-
ceive the system as being a first step toward a tool in-
tegration environment that can provide essential sup-
port to application programmers by accommodating
a spectrum of tools constructed by many different im-
plementers; our future work will also address other
factors in tool integration.
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